
OpenMP Task Scheduling Strategies
for Multicore NUMA Systems

Stephen L. Olivier
University of North Carolina

at Chapel Hill
Campus Box 3175

Chapel Hill, NC 27599, USA
olivier@cs.unc.edu

Allan K. Porterfield
Renaissance Computing

Institute (RENCI)
100 Europa Drive, Suite 540
Chapel Hill, NC 27517, USA

akp@renci.org

Kyle B. Wheeler
Department 1423:

Scalable System Software
Sandia National Laboratories
Albuquerque, NM 87185, USA

kbwheel@sandia.gov
Michael Spiegel

Renaissance Computing
Institute (RENCI)

100 Europa Drive, Suite 540
Chapel Hill, NC 27517, USA

mspiegel@renci.org

Jan F. Prins
University of North Carolina

at Chapel Hill
Campus Box 3175

Chapel Hill, NC 27599, USA
prins@cs.unc.edu

ABSTRACT
The recent addition of task parallelism to the OpenMP shared mem-
ory API allows programmers to express concurrency at a high level
of abstraction and places the burden of scheduling parallel exe-
cution on the OpenMP run time system. Efficient scheduling of
tasks on modern multi-socket multicore shared memory systems
requires careful consideration of an increasingly complex memory
hierarchy, including shared caches and non-uniform memory ac-
cess (NUMA) characteristics. In this paper, we propose a hierarchi-
cal scheduling strategy that leverages different scheduling methods
at different levels of the hierarchy. By allowing one thread to steal
work on behalf of all of the threads within a single chip that share
a cache, our scheduler limits the number of costly remote steals.
For cores on the same chip, a shared LIFO queue allows exploita-
tion of cache locality between sibling tasks as well as between a
parent task and its newly created child tasks. In order to evalu-
ate scheduling strategies, we extended the open-source Qthreads
threading library to implement our schedulers, accepting OpenMP
programs through the ROSE compiler.

We present a comprehensive performance study of diverse OpenMP
task parallel benchmarks, comparing seven different task parallel
run time scheduler implementations on an Intel Nehalem multi-
socket multicore system: our hierarchical work stealing scheduler,
a fully-distributed work stealing scheduler, a centralized sched-
uler, and LIFO and FIFO versions of the Qthreads fully-distributed
scheduler. In addition, we compare our results against the Intel
and GNU OpenMP implementations. Hierarchical scheduling in
Qthreads is competitive on all benchmarks tested. On five of the
seven benchmarks, hierarchical scheduling in Qthreads demonstrates
speedup and absolute performance superior to both the Intel and
GNU OpenMP run time systems. Our run time also demonstrates
similar performance benefits on AMD Magny Cours and SGI Altix
systems, enabling several benchmarks to successfully scale to 192
CPUs of an SGI Altix.

Keywords
Task parallelism, Run time systems, Work stealing, Scheduling,
Multicore, OpenMP

1. INTRODUCTION
Task parallel programming models offer a simple way for appli-

cation programmers to specify parallel tasks in a problem-centric
form that easily scales with problem size, leaving the scheduling
of these tasks onto processors to be performed at run-time. Task
parallelism is well suited to the expression of nested parallelism in
recursive divide-and-conquer algorithms and of unstructured paral-
lelism in irregular computations.

An efficient task scheduler must meet challenging and some-
times conflicting goals: exploit cache and memory locality, main-
tain load balance, and minimize overhead costs. When there is an
inequitable distribution of work among processors, load imbalance
arises. Without redistribution of work, some processors become
idle. Load balancing operations, when successful, redistribute the
work more equitably across processors. However, load balancing
operations can also contribute to overhead costs. Load balancing
operations between sockets increase memory access time due to
more cold cache misses and more high-latency remote memory ac-
cesses. This paper proposes an approach to mitigate these issues
and advances understanding of their impact through the following
contributions:

1. A hierarchical scheduling strategy targeting modern multi-
socket multicore shared memory systems whose NUMA
architecture is not well supported by either fully-distributed
or centralized schedulers. Our approach combines work steal-
ing and shared queues for low overhead load balancing and
exploitation of shared caches.

2. A detailed performance study on a current generation
multi-socket multicore Intel system. Seven run time imple-
mentations supporting task parallel OpenMP programs are
compared: five schedulers that we added to the open-source
Qthreads library, the GNU GCC OpenMP run time, and the
Intel OpenMP run time. In addition to speedup results demon-
strating superior performance by our run time on many of the
diverse benchmarks tested, we examine several secondary
metrics that illustrate the benefits of hierarchical scheduling
over fully-distributed work stealing.

3. Additional performance evaluations on a two-socket mul-
ticore AMD system and a 192-processor SGI Altix. These

evaluations demonstrate performance portability and scala-
bility of our run time implementations.

This paper extends work originally presented in [26]. The re-
mainder of the paper is organized as follows: Section 2 provides
relevant background information, Section 3 describes existing task
scheduler designs and our hierarchical approach, Section 4 presents
the results of our experimental evaluation, and Section 5 discusses
related work. We conclude in Section 6 with some final observa-
tions.

2. BACKGROUND
Broadly supported by both commercial and open-source com-

pilers, OpenMP allows incremental parallelization of serial pro-
grams for execution on shared memory parallel computers. Ver-
sion 3.0 of the OpenMP specification for FORTRAN and C/C++

adds explicit task parallelism to complement its existing data par-
allel constructs [27, 3]. The OpenMP task construct generates a
task from a statement or structured block. Task synchronization
is provided by the taskwait construct, and the semantics of the
OpenMP barrier construct have also been overloaded to require
completion of all outstanding tasks.

Execution of OpenMP programs combines the efforts of the com-
piler and an OpenMP run time library. Intel and GCC both have
integrated OpenMP compiler and run time implementations. Using
the ROSE compiler [24], we have created an equivalent method to
compile and run OpenMP programs with the Qthreads [32] library.
The ROSE compiler is a source-to-source translator that supports
OpenMP 3.0 with a simple compiler flag. In one compile step,
it produces an intermediate C++ file and invokes the GNU C++

compiler to compile that file with additional libraries to produce
an executable. ROSE performs syntactic and semantic analysis on
OpenMP directives, transforming them into run time library calls
in the intermediate program. The ROSE common OpenMP run
time library (XOMP) maps the run time calls to functions in the
Qthreads library.

2.1 Qthreads
Qthreads [32] is a cross-platform general-purpose parallel run

time library designed to support lightweight threading and synchro-
nization in a flexible integrated locality framework. Qthreads di-
rectly supports programming with lightweight threads and a variety
of synchronization methods, including non-blocking atomic opera-
tions and potentially blocking full/empty bit (FEB) operations. The
Qthreads lightweight threading concept and its implementation are
intended to match future hardware environments by providing effi-
cient software support for massive multithreading.

In the Qthreads execution model, lightweight threads (qthreads)
are created in user-space with a small context and small fixed-size
stack. Unlike heavyweight threads such as pthreads, qthreads do
not support expensive features like per-thread identifiers, per-thread
signal vectors, or preemptive multitasking. Qthreads are sched-
uled onto a small set of worker pthreads. Logically, a qthread is
the smallest schedulable unit of work, such as a set of loop itera-
tions or an OpenMP task, and a program execution generates many
more qthreads than it has worker pthreads. Each worker pthread
is pinned to a processor core and assigned to a locality domain,
termed a shepherd. Whereas Qthreads previously allowed only
one worker pthread per shepherd, we added support for multiple
worker pthreads per shepherd. This support enables us to map
shepherds to different architectural components, e.g., one shepherd
per core, one shepherd per shared L3 cache, or one shepherd per
processor socket.

The default scheduler in the Qthreads run time uses a cooperative-
multitasking approach. When qthreads block, e.g., performing an
FEB operation, a context switch is triggered. Because this context
switch is done in user space via function calls and requires neither
signals nor saving a full set of registers, it is less expensive than an
operating system or interrupt-based context switch. This technique
allows qthreads to execute uninterrupted until data is needed that is
not yet available, and allows the scheduler to attempt to hide com-
munication latency by switching to other qthreads. Logically, this
only hides communication latencies that take longer than a context
switch.

The Qthreads API includes several threaded loop interfaces, built
on top of the core threading components. The API provides three
basic parallel loop behaviors: one to create a separate qthread for
each iteration, one that divides the iterations space evenly among
all shepherds, and one that uses a queue-like structure to distribute
sub-ranges of the iteration space to enable self-scheduled loops. We
used the Qthreads queueing implementation as a starting point for
our scheduling work.

We added support for the ROSE XOMP calls to Qthreads al-
lowing it to be used as the run time for OpenMP programs. Al-
though Qthreads XOMP/OpenMP support is not fully complete,
it accepts every OpenMP program accepted by ROSE. We imple-
ment OpenMP threads as worker pthreads. Unlike many OpenMP
implementations, default loop scheduling is self-guided rather than
static, though the latter can be explicitly requested. For task par-
allelism, we implement each OpenMP task as a qthread. (We use
the term task rather than qthread throughout the remainder of the
paper, both for simplicity and and because the scheduling concepts
we explore are applicable to other task parallel languages and li-
braries.) We used the Qthreads FEB synchronization mechanism
as a base layer upon which to implement taskwait and barrier
sychronization.

3. TASK SCHEDULER DESIGN
The stock Qthreads scheduler, called Q in Section 4, was en-

gineered for parallel loop computation. Each processor executes
chunks of loop iterations packaged as qthreads. Round robin dis-
tribution of the iterations among the shepherds and self-scheduling
are used in combination to maintain load balance. A simple lock-
free per-shepherd FIFO queue stores iterations as they wait to be
executed.

Task parallel programs generate a dynamically unfolding sequence
of interdependent tasks, often represented by a directed acyclic
graph (DAG). A task executing on the same thread as its parent
or sibling tasks may benefit from temporal locality if they operate
on the same data. In particular, such locality properties are a feature
of divide-and-conquer algorithms. To efficiently schedule tasks as
lightweight threads in Qthreads, the run time must support more
general dynamic load balancing while exploiting available locality
among tasks. We implemented a modified Qthreads scheduler, L,
to use LIFO rather than FIFO queues at each shepherd to improve
the use of locality. However, the round robin distribution of tasks
between shepherds does not provide fully dynamic load balancing.

3.1 Work Stealing & Centralized Schedulers
To better meet the dual goals of locality and load balance, we

implemented work stealing. Blumofe et al. proved that work steal-
ing is optimal for multithreaded scheduling of DAGs with mini-
mal overhead costs [7], and they implemented it in their Cilk run
time scheduler [6]. Our initial implementation of work stealing in
Qthreads, WS, mimics Cilk’s scheduling discipline: Each shepherd
schedules tasks depth-first locally through LIFO queue operations.

Qthreads Implementations, compiled Rose/GCC -O2 -g
Version Scheduler Number of Task Internal External
Name Implementation Shepherds Placement Queue Access Queue Access

Q Stock one per core round robin FIFO (non-blocking) none
L LIFO one per core round robin LIFO (blocking) none

CQ Centralized Queue one N/A LIFO (blocking) N/A
WS Work Stealing one per core local LIFO (blocking) FIFO stealing

MTS Multi-Threaded Shepherds one per chip local LIFO (blocking) FIFO stealing
ICC Intel 11.1 OpenMP, compiled -O2 -xHost -ipo -g
GCC GCC 4.4.4 OpenMP, compiled -O2 -g

Table 1: Scheduler implementations evaluated: five Qthreads implementations, ICC, and GCC.

An idle shepherd obtains more work by stealing the oldest tasks
from the task queue of a busy shepherd. We implemented two dif-
ferent probing schemes to find a victim shepherd, observing equiv-
alent performance: choosing randomly and commencing search at
the nearest shepherd ID to the thief. In the work stealing scheduler,
interruptions to busy shepherds are minimized because the burden
of load balancing is placed on the idle shepherds. Locality is pre-
served because newer tasks, whose data is still hot in the proces-
sor’s cache, are the first to be scheduled locally and the last in line
to be stolen.

The cost of work stealing operations on multi-socket multicore
systems varies significantly based on the relative locations of the
thief and victim, e.g., whether they are running on cores on the
same chip or on different chips. Stealing between cores on different
chips reduces performance by incurring higher overhead costs, ad-
ditional cold cache misses, remote locking, remote memory access
costs, and coherence misses due to false sharing. Another limita-
tion of work stealing is that it does not make the best possible use
of caches shared among cores. In contrast, Chen et al. [12] showed
that a depth-first schedule close to serial order makes better use
of a shared cache than work stealing, assuming serial execution of
an application makes good use of the cache. Blelloch et al. had
shown that such a schedule can be achieved using a shared LIFO
queue [5]. We implemented a centralized shared LIFO queue, CQ,
for Qthreads, but it is a poor match for multi-socket multicore sys-
tems since not all cores, but only cores on the same chip, share the
same cache. Moreover, the centralized queue implementation is not
scalable, as contention drives up the overhead costs.

3.2 Hierarchical Scheduling
To overcome the limitations of both work stealing and shared

queues, we developed a hierarchical approach: multithreaded shep-
herds, MTS. We create one shepherd for all the cores on the same
chip. These cores share a cache, typically L3, and all are proxi-
mal to a local memory attached to that socket. Within each shep-
herd, we map one pthread worker to each core. Among workers in
each shepherd, a shared LIFO queue provides depth-first schedul-
ing close to serial order to exploit the shared cache. Thus, load
balancing happens naturally among the workers on a chip and con-
current tasks have possible overlapping localities that can be cap-
tured in the shared cache.

Between shepherds work stealing is used to maintain load bal-
ance. Each time the shepherd’s task queue becomes empty, only the
first worker to find the queue empty steals enough tasks (if avail-
able) from another shepherd’s queue to supply all the workers in
its shepherd with work. The other workers in the shepherd spin
until the stolen work appears. Centralized task queueing for work-
ers within each shepherd reduces the need for remote stealing by
providing local load balance. By allowing only one representative

6!The University of North Carolina at Chapel Hill !

Typical SMP System Layout!

2!

5!6!

3!

4!

L3 Cache!
M

em
!

M
em

!

M
em

!
M

em
!

1!0!

7!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0

7!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

Figure 2: Topology of the 4-socket Intel Nehalem.

worker to steal at time, in bulk for all workers in the shepherd, com-
munication overheads are reduced. While a shared queue can be a
performance bottleneck, the number of cores per chip is bounded,
and intra-chip locking operations are fast.

4. EVALUATION
To evaluate the performance of our hierarchical scheduler and

the other Qthreads schedulers, we present results from the Barcelona
OpenMP Tasks Suite (BOTS), version 1.1, available online [15].
The suite comprises a set of task parallel applications from vari-
ous domains with varying computational characteristics [16]. Our
experiments used the following benchmark components and inputs:

• Alignment: Aligns sequences of proteins using dynamic pro-
gramming (100 sequences)

• Fib: Computes the nth Fibonacci number using brute-force
recursion (n = 50)

• Health: Simulates a national health care system over a series
of timesteps (144 cities)

• NQueens: Finds solutions of the n-queens problem using
backtrack search (n = 14)

• Sort: Sorts a vector using parallel mergesort with sequential
quicksort and insertion sort (128M integers)

• SparseLU: Computes the LU factorization of a sparse matrix
(10000 × 10000 matrix, 100 × 100 submatrix blocks)

• Strassen: Computes a dense matrix multiply using Strassen’s
method (8192 x 8192 matrix)

For the Fib, Health, and NQueens benchmarks, the default man-
ual cut-off configurations provided in BOTS are enabled to prune

#pragma omp single
for (si = 0; si < nseqs; si++)
for (sj = i+1; sj < nseqs; sj++)
#pragma omp task firstprivate(si, sj)
compare(seq[si], seq[sj]);

#pragma omp for schedule(dynamic)
for (si = 0; si < nseqs; si++)
for (sj = si+1; sj < nseqs; sj++)
#pragma omp task firstprivate(si, sj)
compare(seq[si], seq[sj]);

Figure 1: Simplified code for the two versions of Alignment: single (left) and for (right).

Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
ICC -O2 -xHost -ipo Serial 28.33 100.4 15.07 49.35 20.14 117.3 169.3

GCC -O2 Serial 28.06 83.46 15.31 45.24 19.83 119.7 162.7
ICC 32 threads 0.9110 4.036 1.670 1.793 1.230 7.901 10.13
GCC 32 threads 0.9973 5.283 7.460 1.766 1.204 4.517 10.13

Qthreads MTS 32 workers 1.024 3.189 1.122 1.591 1.080 4.530 10.72

Table 2: Sequential and parallel execution times using ICC, GCC, and the Qthreads MTS scheduler (time in sec.). For Alignment
and SparseLU, the best time between the two parallel variations (single and for) is shown.

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 3: Health on 4-socket Intel Nehalem

the generation of tasks below a prescribed point in the task hier-
archy. For Sort, cutoffs are set to transition at 32K integers from
parallel mergesort to sequential quicksort and from parallel merge
tasks to sequential merge calls. For Strassen, the cut-off giving the
best performance for each implementation is used. Other BOTS
benchmarks are not presented here: UTS and FFT use very fine-
grained tasks without cutoffs, yielding poor performance on all run
times, and floorplan raises compilation issues in ROSE.

For both the Alignment and SparseLU benchmarks, BOTS pro-
vides two different source files. Simplified code given in Figure 1
illustrates the distinction between the two versions of Alignment. In
the first (Alignment-single) the loop nest that generates the tasks
is executed sequentially by a single thread. This version creates
only task parallelism. In the second (Alignment-for) the outer loop
is executed in parallel, creating both loop-level parallelism and task
parallelism. Likewise, the two versions of SparseLU are one in
which in which tasks are generated within single-threaded loop ex-
ecutions and another in which tasks are generated within parallel
loop executions.

We ran the battery of tests on seven scheduler implementations:
five versions of Qthreads1, the GNU GCC OpenMP implementa-
tion [17], and the Intel ICC OpenMP implementation, as summa-
rized in Table 1. The Qthreads implementations are as follows.

• Q is the original version of Qthreads and defines each core
to be a separate locality domain or shepherd. It uses a non-

1all compiled with GCC 4.4.4 -O2

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 4: Sort on 4-socket Intel Nehalem

blocking FIFO queue to schedule tasks within each shepherd
(individual core). Each shepherd only obtains tasks from its
local queue, although tasks are distributed across shepherds
on a round robin basis for load balance.

• L incorporates a simple double ended locking LIFO queue to
replace the original non-blocking FIFO queue. Concurrent
access at both ends is required for work stealing, though L
retains round robin task distribution for load balance rather
than work stealing.

• CQ uses a single shepherd and centralized shared queue to
distribute tasks among all of the cores in the system. This
should provide adequate load balance, but contention for the
queue limits scalability as task size shrinks.

• WS provides a shepherd (and individual queue) for each core,
and idle shepherds steal tasks from the shepherds running
on the other cores. Initial task placement is not round robin
between queues, but onto the local queue of the shepherd
where it is generated, exploiting locality among related tasks.

• MTS assigns one shepherd to every processor memory lo-
cality (shared L3 cache on chip and attached DIMMs). Each
core on a chip hosts a worker thread that shares its shepherd’s
queue. Only one core is allowed to actively steal tasks on be-
half of the queue at a time and tasks are stolen in chunks large
enough (tunable) to keep all of the cores busy.

4.1 Overall Performance on Intel Nehalem
The first hardware test system for our experiments is a Dell Pow-

erEdge M910 quad-socket blade with four Intel x7550 2.0GHz 8-
core Nehalem-EX processors installed for a total of 32 cores. The
processors are fully connected using Intel QuickPath Interconnect
(QPI) links, as shown in Figure 2. Each processor has an 18MB
shared L3 cache and each core has a private 256KB L2 cache as
well as 32KB L1 data and instruction caches. The blade has 64
dual-rank 2GB DDR3 memory sticks (16 per processor chip) for
a total of 132GB. It runs CentOS Linux with a 2.6.35 kernel. Al-
though the x7550 processor supports HyperThreading (Intel’s si-
multaneous multithreading technology), we pinned only one thread
to each physical core for our experiments.

All executables using the Qthreads and GCC run times were
compiled with GCC 4.4.4 with -g and -O2 optimization, for con-
sistency. Executables using the Intel run time were compiled with
ICC 11.1 and -O2 -xHost -ipo optimization. Reported results are
from the best of ten runs.

Overall the GCC compiler and ICC compiler produce executa-
bles with similar serial performance, as shown in Table 2. These
serial execution times provide a basis for us to compare the relative
speedup of the various benchmarks. If the -ipo and -xHost flags are
not used with ICC on SparseLU, the GCC serial executable runs
3x faster than the ICC executable compiled with -O2 alone. The
significance of this difference will be clearer in the presentation of
parallel performance on SparseLU in Section 4.2. Several other
benchmarks also run slower with those ICC flags omitted, though
not by such a large margin.

Qthreads MTS 32 core performance is faster or comparable to
the performance of ICC and GCC. In absolute execution time, MTS
runs faster than ICC for 5 of the 7 benchmarks by up to 74.4%. It
is over 6.6x faster for one benchmark than GCC and up to 65.6%
faster on 4 of the 6 others. On two benchmarks MTS runs slower:
for Alignment, it is 12.4% slower than ICC and 2.7% slower than
GCC and for Strassen it is 5.8% slower than both (although WS
equaled GCC’s performance [see discussion on Strassen in sec. 4.2]).
Thus even as a research prototype, ROSE/Qthreads provides com-
petitive OpenMP task execution.

4.2 Individual Performance on Intel Nehalem
Individual benchmark performance on multiple implementations

of the OpenMP run time demonstrates features of particular appli-
cations where Qthreads generates better scheduling and where it
needs further development. Examining where the run times differ
in achieved speedup reveals the strengths and weaknesses of each
scheduling approach.

The Health benchmark, Figure 3, shows significant diversity in
performance and speedup. GNU performance is slightly superlin-
ear for 4 cores (4.5x), but peaks with only 8 cores active (6.3x)
and by 32 cores the speedup is only 2x. Intel also has scaling is-
sues and performance flattens to 9x at 16 cores. Stock Qthreads Q
scales slightly better (9.4x), but just switching to the LIFO queue
L to improve locality between tasks allows speedup on 32 cores to
reach 11.5x. Since the individual tasks are relatively small, CQ ex-
periences contention on its task queue that limits speedup to 7.7x
on 16 cores, with performance degrading to 6.1x at 32 cores. When
work stealing, WS, is added to Qthreads the performance improves
slightly and speedup reaches 11.6x. MTS further improves locality
and load balance on each processor by sharing a queue across the
cores on each chip, and speedup increases to 13.6x on 32 cores.
This additional scalability allows Qthread MTS a 17.3% faster exe-
cution time on 32 cores than any other implementation, much faster
than ICC (48.7%) and GCC(116.1%). Health provides an excellent

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 5: NQueens on 4-socket Intel Nehalem

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 6: Fib on 4-socket Intel Nehalem

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 7: Alignment-single on 4-socket Intel Nehalem

example of how both work stealing and queue sharing within a sys-
tem can independently and together improve performance, though
the failure of any run time to reach 50% efficiency on 32 cores
shows that there is room for improvement.

The benefits of hierarchical scheduling can also be seen in Fig-
ure 4. Sort, for which we used a manual cutoff of 32K integers
to switch between parallel and serial sorts, achieved speed up of
about 16x for 32 cores on ICC and GCC, but just 11.4x for the base
version of Qthreads, Q. The switch to a LIFO queue, L, improved
speedup to 13.6x by facilitating data sharing between a parent and
child. Independent changes to add work stealing, WS, and improve
load balance, CQ, both improved speedup to 16x. By combining

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 8: Alignment-for on 4-socket Intel Nehalem

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 9: SparseLU-single on 4-socket Intel Nehalem

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	

Figure 10: SparseLU-for on 4-socket Intel Nehalem

the best features of both work stealing and multiple threads sharing
a queue, MTS increased speedup to 18.4x and achieved an 13.8%
and 11.4% reduction in overall execution time compared to ICC
and GCC OpenMP versions.

Locality effects allow NQueens to achieve slightly super-linear
speedup for 4 and 8 cores using Qthreads. As seen in Figure 5,
speedup is near-linear for 16 threads and only somewhat sub-linear
for 32 threads on all OpenMP implementations. By adding load
balancing mechanisms to Qthreads, its speedup improved signifi-
cantly (24.3x to 28.4x). CQ and WS both improved load balance
beyond what the LIFO queue (L) provides and little is gained by
combining them together in MTS. The additional scaling of these

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	 8	 16	 32	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 L	 Q	 ICC	 GCC	

Figure 11: Strassen on 4-socket Intel Nehalem

three versions results in a execution time 12.6% faster than ICC and
10.9% faster than GCC.

Fib, Figure 6, uses a cut-off to stop the creation of very small
tasks, and thus has enough work in each task to amortize the costs
of queue access. CQ yields performance 2-3% faster than MTS
and the other versions of Qthreads, since load balance is good and
no time is spent looking for work. The load balancing versions of
Qthreads (26.1x - 26.7x) scale better than Intel at 24.9x. Both sys-
tems beat GCC substantially at only 15.8x. Overall, the scheduling
improvements resulted in MTS running 26.5% faster than ICC and
28.8% faster than GCC but 2.0% slower than CQ.

The next two applications Alignment and SparseLU, each have
two versions. For Alignment, Figures 7 and 8, speedup was near-
linear for all versions and execution times between GCC and Qthreads
were close (GCC +2.7% single initial task version; Qthreads +0.5%
parallel loop version). ICC scales better than GCC or Qthreads
MTS, WS, CQ, with 12.4% lower execution time. Since Alignment
has no taskwait synchronizations, we speculate that ICC scales
better on this benchmark because it maintains fewer bookkeeping
data structures in the absence of synchronization.

On both SparseLU versions, ICC serial performance improved
nearly 3x using the -ipo and -xHost flags rather than using -O2
alone. The flags also improved parallel performance, but by only
60%, so the improvement does not scale linearly. On SparseLU-
single, Figure 9, the performance of GCC and the various Qthreads
versions is effectively equivalent, with speedup reaching 26.2x. Due
to the aforementioned scaling issues, ICC speedup reaches only
14.8x. The execution times differ by 0.3% between GCC and MTS
with both about 74.4% faster than ICC. On SparseLU-for, Fig-
ure 10, the GCC OpenMP runs were stopped after exceeding the
sequential time; thus data is not reported. ICC again scales poorly
(14.8x), and Qthreads speedup improves due to the LIFO work
queue and work stealing, reaching 22.2x. MTS execution time is
46.3% faster than ICC.

Strassen, Figure 11, performs recursive matrix multiplication us-
ing Strassen’s method and is challenging for implementations with
multiple workers accessing a queue. We used the cutoff setting that
gave the best performance for each implementation: coarser (128)
for CQ and MTS and the default setting (64) for the others. The
execution times of GCC, and WS are within 1% of each other on
32 cores, and Intel scales slightly better (16.7x vs 16.1x). For MTS,
in which only 8 threads share a queue (rather than 32 as in CQ)
the speedup reaches 15.2x. For CQ, however, the performance hit
due to queue contention is substantial, as speedup peaks at 9.7x. Q
performance suffers from the FIFO ordering: not enough parallel
work is expressed at any one time, and speedup never exceeds 4x.

Configuration Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
(single) (for) (single) (for)

ICC 32 threads 4.4 2.0 3.7 2.0 3.2 4.0 1.1 3.9 1.8
GCC 32 threads 0.11 0.34 2.8 0.35 0.77 1.8 0.49 N/A 1.4

Qthreads MTS 32 workers 0.28 1.5 3.3 1.3 0.78 1.9 0.15 0.16 1.9
Qthreads WS 32 shepherds 0.035 1.8 2.0 0.29 0.60 0.90 0.060 0.24 3.0

Table 3: Variability in performance on 4-socket Intel Nehalem using ICC, GCC, MTS, and WS schedulers (standard deviation as a
percent of the fastest time).

Benchmark MTS WS
Steals Failed Steals Failed

Alignment (single) 1016 88 3695 255
Alignment (for) 109 122 1431 286

Fib 633 331 467 984
Health 28948 10323 295637 47538

NQueens 102 141 1428 389
Sort 1134 404 19330 3283

SparseLU (single) 18045 8133 68927 24506
SparseLU (for) 13486 11889 68099 32205

Strassen 227 157 14042 823

Table 5: Number of remote steal operations during execution of
Health and Sort by Qthreads MTS&WS schedulers. In a failed
steal, the thief acquires the lock on the victim’s queue after a
positive probe for work but ultimately finds no work available
for stealing. On-chip steals performed by the WS scheduler are
excluded. Average of ten runs.

Metric MTS WS %Diff
L3 Misses 1.16e+06 2.58e+06 38

Bytes from Memory 8.23e+09 9.21e+09 5.6
Bytes on QPI 2.63e+10 2.98e+10 6.2

Table 6: Memory performance data for Health using MTS and
WS. Average of ten runs on 4-socket Intel Nehalem.

4.3 Variability
One interesting feature of a work stealing run time is an idle

thread’s ability to search for work and the effect this has on perfor-
mance in regions of limited parallelism or load imbalance. Table 3
gives the standard deviation of 10 runs as a percent of the fastest
time for each configuration tested with 32 threads. Both Qthreads
implementations with work stealing (WS and MTS) have very small
variation in execution time for 3 of the 9 programs. For 8 of the 9
benchmarks, both WS and MTS show less variability than ICC.

In three cases (Alignment-single, Health, SparseLU-single),
Qthreads WS variability was much lower than MTS. Since MTS en-
ables only one worker thread per shepherd at a time to steal a chunk
of tasks, it is reasonable to expect this granularity to be reflected
in execution time variations. Overall, we see less variability with
WS than MTS in 6 of the 9 benchmarks. We speculate that nor-
mally having all the threads looking for work leads to finding the
last work quickest and therefore less variation in total execution
time. However, for some programs (Alignment-for, SparseLU-
for, Strassen), stealing multiple tasks and moving them to an idle
shepherd results in faster execution during periods of limited par-
allelism. WS also shows less variability than GCC in 6 of the 8
programs for which we have data. There is no data for SparseLU-
for on GCC, as explained in the previous section.

0.9	

1	

1.1	

1.2	

1	 2	 4	 8	 16	 32	 64	 Pe
rf
or
m
an

ce
	 re

la
,
ve
	

	 to
	 c
hu

nk
	 s
iz
e	
1	

Chunk	 size	 (number	 of	 tasks	 stolen	
	 per	 steal	 opera,on)	

Figure 12: Performance on Health using MTS based on choice
of the chunk size for stealing. Average of ten runs on 4-socket
Intel Nehalem.

Metric MTS WS %Diff
L3 Misses 1.03e+7 3.42e+07 54

Bytes from Memory 2.27e+10 2.53e+10 5.5
Bytes on QPI 4.35e+10 4.87e+10 5.6

Table 7: Memory performance data for Sort using MTS and
WS. Average of ten runs on 4-socket Intel Nehalem.

4.4 Performance Analysis of MTS
Limiting the number of inter-chip load balancing operations is

central to the design of our hierarchical scheduler (MTS). Consider
the number of remote (off-chip) steal operations performed by MTS
and by the flat work stealing scheduler WS, shown in Table 5. These
counts exclude the number of on-chip steals performed by WS, and
recall that MTS uses work stealing only between chips. We observe
that WS steals more than MTS in almost all cases, and some cases
by an order of magnitude. Health and Sort are two benchmarks
where MTS wins clearly in terms of speedup. WS steals remotely
over twice as many times as MTS on Sort and nearly twice as many
times as MTS on Health. The number of failed steals is also signif-
icantly higher with WS than with MTS. A failed steal occurs when
a thief’s lock-free probe of a victim indicates that work is available
but upon acquisition of the lock to the victim’s queue the thief finds
no work to steal because another thread has stolen it or the victim
has executed the tasks itself. Thus, both failed and completed steals
contribute to overhead costs.

The MTS scheduler aggregates inter-chip load balancing by per-
mitting only one worker at a time to initiate bulk stealing from re-
mote shepherds. Figure 12 shows how this improves performance
on Health, one of the benchmarks sensitive to load balancing gran-
ularity. If only one task is stolen at time, subsequent steals are
needed to provide all workers with tasks, adding to overhead costs.
There are eight cores per socket on our test machine, thus eight
workers per shepherd, and a target of eight tasks stolen per steal
request. This coincides with the peak performance: When the tar-
get number of tasks stolen corresponds to the number of workers

Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
(single) (for) (single) (for)

Tasks Stolen 5900 450 2181 159386 423 5214 93117 38198 1355
Tasks Per Steal 5.8 4.1 3.4 5.5 4.1 4.6 5.1 2.8 6.0

Table 4: Tasks stolen and tasks per steal using the MTS scheduler. Average of ten runs.

7!The University of North Carolina at Chapel Hill !

Typical SMP System Layout!

2!
L3

Cache!

M
em

!

M
em

! 1!0!

3! 3!
L3

Cache!

M
em

!

M
em

!0! 1!

2!

2!
L3

Cache!

M
em

!

M
em

! 1!0!

3! 3!
L3

Cache!
M

em
!

M
em

!0! 1!

2!

Figure 13: Topology of the 2-socket/4-chip AMD Magny Cours.

in the shepherd, all workers in the shepherd are able to draw work
immediately from the queue as a result of the steal.

Frequently the number of tasks available to steal is less than the
target number to be stolen. Table 4 shows the total number of tasks
stolen and the average number of tasks stolen per steal operation.
Across all benchmarks, the range of tasks stolen per steal is 2.8 to
6.0. The numbers skew downward due to a scarcity of work during
start-up and near termination, when only one or few tasks are avail-
able at a time. Note the lower number both of total steals and tasks
per steal for the for versions of Alignment and SparseLU com-
pared to the single versions. Loop parallel initialization provides
good initial load balance so that fewer steals are needed, and those
that do occur sporadically are near termination and synchronization
phases.

Another benefit of the MTS scheduler is better L3 cache perfor-
mance, since all workers in a shepherd share the on-chip L3 cache.
The WS scheduler exhibits poorer cache performance, and subse-
quently, more reads to main memory. Tables 6 and 7 show the
relevant metrics for Health and Sort as measured using hardware
performance counters, averaged over ten runs. They also show
more traffic on the Quick Path Interconnect (QPI) between chips
for WS than for MTS. QPI traffic occurs when data is requested and
transferred from either remote memory or remote L3 cache, i.e.,
attached to a different socket of the machine. Not only are remote
accesses higher latency, but they also result in remote cache inval-
idations of shared cache lines and subsequent coherence misses.
Increased QPI traffic in WS reflects more remote steals and more
accesses to data in remote L3 caches and remote memory. In sum-
mary, MTS gains advantage by exploiting locality among tasks exe-
cuted by threads on cores of the same chip, making good use of the
shared L3 cache to access memory less frequently and avoid high
latency remote accesses and coherence misses.

4.5 Performance on AMD Magny Cours
We also evaluate the Qthreads schedulers against ICC and GCC

on a 2-socket AMD Magny Cours system, one node of a cluster
at Sandia National Laboratories. Each socket hosts an Opteron

6136 multi-chip module: two quad-core chips that share a pack-
age connected via two internal HyperTransport (HT) links. The
remaining two HT links per chip are connected to the chips in the
other socket, as shown in Figure 13. Each chip contains a memory
controller with 8GB attached DDR3 memory, a 5MB shared L3
cache, and four 2.4 MHz cores with 64kb L1 and 512kb L2 caches.
Thus, there are a total of 16 cores and 32GB memory, evenly di-
vided among four HyperTransport-connected NUMA nodes (one
per chip, two per socket). The system runs Cray compute-node
Linux kernel 2.6.27, and we used the GCC 4.6.0 with -O3 opti-
mization and ICC 12.0 with -O3 -ipo -msse3 -simd optimization.

We ran the same benchmarks with the same parameters as the
Intel Nehalem evaluation. Sequential execution times are reported
in Table 8. Again, interprocedural optimization (-ipo) in ICC was
essential to match the GCC performance; execution time was more
than 500 seconds without it. The greatest remaining difference be-
tween the sequential times is on Alignment, where GCC is 20%
slower than ICC.

Speedup results using 16 threads are given in Figure 14, for
Qthreads configurations with one shepherd per chip, MTS (4Q); one
shepherd per socket, MTS (2Q); one shepherd per core (flat work
stealing), WS; ICC; and GCC. At least one of the Qthreads variants
matches or beats ICC and GCC on all but one of the benchmarks.
Moreover, the Qthreads schedulers achieve near-linear to slightly
super-linear speedup on 6 of the 9 benchmarks: the two versions
of Alignment, Fib, NQueens, and the two versions of SparseLU.
Of those, speedup using ICC is 22% and 23% lower than Qthreads
on the two versions of Alignment, 10% and 18% lower on the two
versions of SparseLU, 9% lower on NQueens and 7% lower on Fib.
GCC is 42% lower than Qthreads on Fib, 9% and 27% lower on the
two versions of SparseLU, and close on NQueens and both versions
of Alignment.

On three of the benchmarks, no run time achieves ideal speedup.
Strassen is the only benchmark on which ICC and GCC outperform
Qthreads, and even ICC falls short of 10X. On Sort, the best per-
formance is with Qthreads WS, MTS(4Q), and GCC all at roughly
8x. Speedup is lower with Qthreads MTS (2Q) and still lower with
CQ, indicating that centralized queueing beyond the chip level is
counterproductive. ICC speedup lags behind the other schedulers
on this benchmark. Speedup on Health peaks at 3.3x on this system
using the Qthreads schedulers, with even worse speedup using ICC
and GCC.

The variability in execution times is shown in Table 9. The
standard deviations for all of the benchmarks on the MTS and WS
Qthreads implementations are below 2% of the best case execution
time. On all but two of the benchmarks, the MTS standard deviation
is less than 1%.

The Magny Cours results demonstrate that the competitive, and
in some cases superior, performance of our Qthreads schedulers
against ICC and GCC is not confined to the Intel architecture. At
first glance, differences in performance using the various Qthreads
configurations seem less pronounced than they were on the four
socket Intel machine. However, those differences were strongest on
the Intel machine at 32 threads, and the AMD system only has 16
threads. Some architectural differences go beyond the difference in

Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
ICC 23.93 107.9 10.18 60.56 18.51 156.0 214.9
GCC 29.77 105.0 10.67 58.16 17.72 153.4 211.1

Table 8: Sequential execution times using ICC and GCC on the AMD Magny Cours.

0	

2	

4	

6	

8	

10	

12	

14	

16	

Alignment	
single	

Alignment	
for	

Fib	 Health	 NQueens	 Sort	 SparseLU	
single	

SparseLU	
for	

Strassen	

Sp
ee
du

p	

MTS	 (4Q)	 MTS	 (2Q)	 WS	 CQ	 ICC	 GCC	

Figure 14: BOTS benchmarks on 2-socket AMD Magny Cours using 16 threads

core count. MTS is designed to leverage locality in shared L3 cache,
but the Magny Cours has much less L3 cache per core than the Intel
system (1.25MB/core versus 2.25MB/core). Less available cache
also accounts for worse performance on the data-intensive Sort and
Health benchmarks.

4.6 Performance on SGI Altix
We evaluate scalability beyond 32 threads on an SGI Altix 3700.

Each of the 96 nodes contains two 1.6MHz Intel Itanium2 proces-
sors and 4GB of memory, for a total of 192 processors and 384GB
of memory. The nodes are connected by the proprietary SGI NU-
MALink4 network and run a single system image of SuSE Linux
kernel 2.6.16. We used the GCC 4.5.2 compiler as the native com-
piler for our ROSE-transformed code and the GCC OpenMP run
time for comparison against Qthreads. The version of ICC on the
system is not recent enough to include support for OpenMP tasks.
Sequential execution times, given in Table 10, are slower than those
of the other machines, because the Itanium2 is an older processor,
runs at a lower clock rate, and uses a different instruction set (ia64).

The best observed performance on any of the benchmarks was on
NQueens, shown in Figure 15. WS achieves 115x on 128 threads
(90% parallel efficiency) and reaches 148x on 192 threads. MTS
reaches 134x speedup. (On this machine, the MTS configuration
has two threads per shepherd to match the two processors per NUMA
node.) CQ tops out at 77x speedup on 96 threads, beyond which
overheads from queue contention become overwhelming. GCC
gets up to only 40x speedup. Although no run time achieves linear
speedup on the full machine, they all reach 30x to 32x speedup with
32 threads; this underlines the importance of testing at higher pro-
cessor counts to evaluate scalability. On the Fib benchmark, shown
in Figure 16, MTS almost doubles the performance of CQ and GCC
on 192 threads, with a maximum speedup of 97x. CQ peaks at 68x

0	

30	

60	

90	

120	

150	

16	 32	 64	 96	 128	 192	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 GCC	

Figure 15: NQueens on SGI Altix

speedup on 128 threads and WS exhibits its worst performance rel-
ative to MTS, maxing out at 77x speedup on 96 threads.

We see better peak performance on Alignment-for (Figure 18)
than Alignment-single (Figure 17). WS reaches 116x speedup on
192 threads and MTS reaches 107x, with CQ and GCC performing
significantly worse. On the other hand, SparseLU-single (Fig-
ure 19) scales better than SparseLU-for (Figure 20). Peak speedup
on SparseLU-single is 89x with MTS and 86x with WS, while
SparseLU-for achieves a peak speedup of 60x. As was the case
on the 4-socket Intel machine, GCC is unable to complete after a
timeout equal to the sequential execution time.

For three of the benchmarks, no improvement in speedup was
observed beyond 32 threads: Health, Sort, and Strassen. As shown
in Figure 21, none exceed 10x speedup on the Altix. These were
also observed to be the most challenging on the four-socket In-

Configuration Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
(single) (for) (single) (for)

ICC 2.2 0.80 1.3 14 1.1 8.2 0.62 0.31 2.5
GCC 0.035 0.27 5.4 0.38 0.96 3.5 0.016 0.025 1.1

Qthreads MTS (4Q) 0.25 0.63 1.5 0.17 0.13 1.1 0.012 0.16 0.98
Qthreads MTS (2Q) 0.46 0.68 1.4 0.069 0.24 0.30 0.015 0.081 0.87

Qthreads WS 0.21 1.3 1.5 0.15 0.13 1.8 0.036 0.094 1.4

Table 9: Variability in performance on AMD Magny Cours using 16 threads (standard deviation as a percent of the fastest time).

Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
GCC 53.96 139.2 45.60 63.62 33.59 632.7 551.3

Table 10: Sequential execution times on the SGI Altix.

0	

30	

60	

90	

120	

150	

16	 32	 64	 96	 128	 192	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 GCC	

Figure 16: Fib on SGI Altix

0	

30	

60	

90	

120	

150	

16	 32	 64	 96	 128	 192	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 GCC	

Figure 17: Alignment-single on SGI Altix

tel and two-socket AMD systems. Health and Sort are the most
data-intensive and require new strategies to achieve performance
improvement, an important area of research going forward.

5. RELATED WORK
Many theoretical and practical issues of task parallel languages

and their run time implementations were explored during the de-
velopment of earlier task parallel programming models, both hard-
ware supported, e.g., Tera MTA [1], and software supported, e.g.,
Cilk [6, 18]. Much of our practical reasoning was influenced by ex-
perience with the Tera MTA run time, designed for massive multi-
threading and low-overhead thread synchronization. Cilk schedul-

0	

30	

60	

90	

120	

150	

16	 32	 64	 96	 128	 192	
Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 GCC	

Figure 18: Alignment-for on SGI Altix

0	

30	

60	

90	

120	

150	

16	 32	 64	 96	 128	 192	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 GCC	

Figure 19: SparseLU-single on SGI Altix

ing uses a work-first scheduling strategy coupled with a randomized
work stealing load balancing strategy shown to be optimal [7]. Our
use of shared queues is inspired by Parallel Depth-First Schedul-
ing (PDFS) [5], which attempts to maintain a schedule close serial
execution order, and its constructive cache sharing benefits [12].

The first prototype compiler and run time for OpenMP 3.0 tasks
was an extension of Nanos Mercurium [30]. An evaluation of
scheduling strategies for tasks using Nanos compared centralized
breadth-first and fully-distributed depth-first work stealing sched-
ulers [14]. Later extensions to Nanos included internal dynamic
cut-off methods to limit overhead costs by inlining tasks [13].

In addition to OpenMP 3.0, there are currently several other
task parallel languages and libraries available to developers: Mi-

0	

30	

60	

90	

120	

150	

16	 32	 64	 96	 128	 192	

Sp
ee
du

p	

Number	 of	 Threads	

MTS	 WS	 CQ	 GCC	

Figure 20: SparseLU-for on SGI Altix

0	

4	

8	

12	

16	

20	

24	

28	

32	

Health	 Sort	 Strassen	

Sp
ee
du

p	

MTS	 WS	 CQ	 GCC	

Figure 21: Health, Sort, and Strassen on SGI Altix: 32 threads

crosoft Task Parallel Library [23] for Windows, Intel Thread Buld-
ing Blocks (TBB) [22], and Intel Cilk Plus [21] (formerly Cilk++).
The task parallel model and its run time support are also key com-
ponents of the X10 [10] and Chapel [9] languages.

Hierarchical work stealing, i.e., stealing at all levels of a hier-
archical scheduler, has been implemented for clusters and grids in
Satin [31], ATLAS [4], and more recently in Kaapi [28, 19]. Those
libraries are not optimized for shared caches in multi-core, which
is the basis for the shared LIFO queue at the lower level of our hi-
erarchical scheduler. The ForestGOMP run time system [8] also
uses work stealing at both levels of its hierarchical scheduler, but
like our system targets NUMA shared memory systems. It sched-
ules OpenMP nested data parallelism by clustering related threads
(not tasks) into “bubbles,” scheduling them by work stealing among
cores on the same chip, and selecting for work stealing between
chips those threads with the lowest amount of associated memory.
Data is migrated between sockets along with the stolen threads.

6. CONCLUSIONS AND FUTURE WORK
As multicore systems proliferate, the future of software devel-

opment for supercomputing relies increasingly on high level pro-
gramming models such as OpenMP for on-node parallelism. The
recently added OpenMP constructs for task parallelism raise the
level of abstraction to improve programmer productivity. However,
if the run time can not execute applications efficiently on the avail-
able multicore systems, the benefits will be lost.

The complexity of multicore architectures grows with each hard-
ware generation. Today, even off-the-shelf server chips have 6-12

cores and a chip-wide shared cache. Tomorrow may bring 30+

cores and multiple caches that service subsets of cores. Exist-
ing scheduling approaches were developed based on a flat system
model. Our performance study revealed their strengths and limi-
tations on a current generation multi-socket multicore architecture
and demonstrated that mirroring the hierarchical nature of the hard-
ware in the run time scheduler can indeed improve performance.
Qthreads (by way of ROSE) accepts a large number of OpenMP
3.0 programs, and, using our MTS scheduler, has performance as
high or higher than the commonly available OpenMP 3.0 imple-
mentations. Its combination of shared LIFO queues and work steal-
ing maintains good load balance while supporting effective cache
performance and limiting overhead costs. On the other hand, pure
work stealing has been shown to provide the least variability in per-
formance, an important consideration for distributed applications
in which barriers cause the application to run at the speed of the
slowest worker, e.g., in a Bulk Synchronous Processing (BSP) ap-
plication with task parallelism used in the computation phase.

The scalability results on the SGI Altix are important because
previous BOTS evaluations [16, 26] only presented results on up to
32 cores. It is encouraging that several benchmarks reach speedup
of 90X-150X on 196 cores. The challenge on those benchmarks is
to close the performance gap between observed speedup and ideal
speedup through incremental reductions in overhead costs and idle
times and better exploitation of locality. Other benchmarks fail to
scale well even at 32 threads or less. On the data-intensive sort and
health benchmarks we have observed a sharp increase in compu-
tation time due to increased load latencies compared to sequential
execution. To ameliorate that issue, we are investigating program-
mer annotations to specify task scheduling constraints that identify
and maintain data locality.

One challenge posed by our hierarchical scheduling strategy is
the need for an efficient queue supporting concurrent access on
both ends, since workers within a shepherd share a queue. Most
existing lock-free queues for work stealing, such as the Arora, Blu-
mofe, and Plaxton (ABP) queue [2] and resizable variants [20, 11],
allow only one thread to execute push() and pop() operations.
Lock-free doubly-ended queues (deques) generalize the ABP queue
to allow for concurrent insertion and removal on both ends of the
queue. Lock-free deques have been implemented with compare-
and-swap atomic primitives [25, 29], but speed is limited by their
use of linked lists. We are currently working to implement an array-
based lock-free deque, though even with a lock-based queue we
have achieved results competitive with and in many cases better
than ICC and GCC.

7. ACKNOWLEDGMENTS
This work is supported in part by a grant from the United States

Department of Defense. Sandia is a multiprogram laboratory oper-
ated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

8. REFERENCES
[1] G. A. Alverson, R. Alverson, D. Callahan, B. Koblenz,

A. Porterfield, and B. J. Smith. Exploiting heterogeneous
parallelism on a multithreaded multiprocessor. In ICS ’92:
Proc. 6th ACM Intl. Conference on Supercomputing, pages
188–197. ACM, 1992.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In SPAA
’98: Proc. 10th ACM Symposium on Parallel Algorithms and
Architectures, pages 119–129. ACM, 1998.

[3] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The
design of OpenMP tasks. IEEE Trans. Parallel Distrib. Syst.,
20:404–418, March 2009.

[4] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer.
Atlas: an infrastructure for global computing. In EW 7: Proc.
7th ACM SIGOPS European Workshop, pages 165–172, NY,
NY, 1996. ACM.

[5] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably
efficient scheduling for languages with fine-grained
parallelism. JACM, 46(2):281–321, 1999.

[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In PPoPP ’95: Proc. 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 207–216. ACM, 1995.

[7] R. Blumofe and C. Leiserson. Scheduling multithreaded
computations by work stealing. In SFCS ’94: Proc. 35th
Annual Symposium on Foundations of Computer Science,
pages 356–368. IEEE, Nov. 1994.

[8] F. Broquedis, O. Aumage, B. Goglin, S. Thibault, P.-A.
Wacrenier, and R. Namyst. Structuring the execution of
OpenMP applications for multicore architectures. In IPDPS
2010: Proc. 25th IEEE Intl. Parallel and Distributed
Processing Symposium. IEEE, April 2010.

[9] B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the Chapel language. IJHPCA,
21(3):291–312, 2007.

[10] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An
object-oriented approach to non-uniform cluster computing.
In OOPSLA ’05: Proc. 20th ACM SIGPLAN Conference on
Object Oriented Programming Systems, Languages, and
Applications, pages 519–538, NY, NY, 2005. ACM.

[11] D. Chase and Y. Lev. Dynamic circular work-stealing deque.
In SPAA ’05: Proc. 17th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 21–28. ACM, 2005.

[12] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis,
A. Ailamaki, G. E. Blelloch, B. Falsafi, L. Fix,
N. Hardavellas, T. C. Mowry, and C. Wilkerson. Scheduling
threads for constructive cache sharing on CMPs. In SPAA
’07: Proc. 19th ACM Symposium on Parallel Algorithms and
Architectures, pages 105–115. ACM, 2007.

[13] A. Duran, J. Corbalán, and E. Ayguadé. An adaptive cut-off

for task parallelism. In SC08: ACM/IEEE Supercomputing
2008, pages 1–11, Piscataway, NJ, 2008. IEEE Press.

[14] A. Duran, J. Corbalán, and E. Ayguadé. Evaluation of
OpenMP task scheduling strategies. In R. Eigenmann and
B. R. de Supinski, editors, IWOMP ’08: Proc. Intl. Workshop
on OpenMP, volume 5004 of LNCS, pages 100–110.
Springer, 2008.

[15] A. Duran and X. Teruel. Barcelona OpenMP Tasks Suite.
http://nanos.ac.upc.edu/projects/bots, 2010.

[16] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and
E. Ayguadé. Barcelona OpenMP Tasks Suite: A set of
benchmarks targeting the exploitation of task parallelism in
OpenMP. In ICPP ’09: Proc. 38th Intl. Conference on
Parallel Processing, pages 124–131. IEEE, Sept. 2009.

[17] Free Software Foundation Inc. GNU Compiler Collection.
http://www.gnu.org/software/gcc/, 2010.

[18] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the Cilk-5 multithreaded language. In

PLDI ’98: Proc. 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
212–223. ACM, 1998.

[19] T. Gautier, X. Besseron, and L. Pigeon. Kaapi: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors. In PASCO ’07: Proc. 2007 Intl.
Workshop on Parallel Symbolic Computation, pages 15–23.
ACM, 2007.

[20] D. Hendler, Y. Lev, M. Moir, and N. Shavit. A dynamic-sized
nonblocking work stealing deque. Distributed Computing,
18:189–207, 2006.

[21] Intel Corp. Intel Cilk Plus.
http://software.intel.com/en-us/articles/intel-cilk-plus/, 2010.

[22] A. Kukanov and M. Voss. The foundations for scalable
multi-core software in Intel Threading Building Blocks. Intel
Technology Journal, 11(4), Nov. 2007.

[23] D. Leijen, W. Schulte, and S. Burckhardt. The design of a
task parallel library. SIGPLAN Notices: OOPSLA ’09: 24th
ACM SIGPLAN Conference on Object Oriented
Programming Systems, Languages, and Applications,
44(10):227–242, 2009.

[24] C. Liao, D. J. Quinlan, T. Panas, and B. R. de Supinski. A
ROSE-based OpenMP 3.0 research compiler supporting
multiple runtime libraries. In M. Sato, T. Hanawa, M. S.
Müller, B. M. Chapman, and B. R. de Supinski, editors,
IWOMP 2010: Proc. 6th Intl. Workshop on OpenMP, volume
6132 of LNCS, pages 15–28. Springer, 2010.

[25] M. M. Michael. CAS-based lock-free algorithm for shared
deques. In H. Kosch, L. Böszörményi, and H. Hellwagner,
editors, Euro-Par 2003: Proc. 9th Euro-Par Conference on
Parallel Processing, volume 2790 of LNCS, pages 651–660.
Springer, 2003.

[26] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F.
Prins. Scheduling task parallelism on multi-socket multicore
systems. In ROSS ’11: Proc. Intl. Workshop on Runtime and
Operating Systems for Supercomputers (in conjunction with
2011 ACM Intl. Conference on Supercomputing), pages
49–56. ACM, 2011.

[27] OpenMP Architecture Review Board. OpenMP API,
Version 3.0, May 2008.

[28] J.-N. Quintin and F. Wagner. Hierarchical work-stealing. In
EuroPar ’10: Proc. 16th Intl. Euro-Par Conference on
Parallel Processing: Part I, pages 217–229, Berlin,
Heidelberg, 2010. Springer.

[29] H. Sundell and P. Tsigas. Lock-free and practical doubly
linked list-based deques using single-word
compare-and-swap. In T. Higashino, editor, OPODIS 2004:
8th Intl. Conference on Principles of Distributed Systems,
volume 3544 of LNCS, pages 240–255. Springer, 2005.

[30] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and
E. Ayguadé. Support for OpenMP tasks in Nanos v4. In
K. A. Lyons and C. Couturier, editors, CASCON ’07: Proc.
2007 Conference of the Center for Advanced Studies on
Collaborative Research, pages 256–259. IBM, 2007.

[31] R. van Nieuwpoort, T. Kielmann, and H. E. Bal. Satin:
Efficient parallel divide-and-conquer in Java. In Euro-Par
’00: Proc. 6th Intl. Euro-Par Conference on Parallel
Processing, pages 690–699, London, UK, 2000. Springer.

[32] K. B. Wheeler, R. C. Murphy, and D. Thain. Qthreads: An
API for programming with millions of lightweight threads.
In IPDPS 2008: Proc. 22nd IEEE Intl. Symposium on
Parallel and Distributed Processing, pages 1–8. IEEE, 2008.

