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Abstract

The power wall, the instruction-level parallelism wall, and the memory wall are

driving a shift in microprocessor design from implicitly parallel architectures to-

wards explicitly parallel architectures. A necessary condition for peak scalability

and performance on modern hardware is application execution that is aware of

the memory hierarchy. The thesis of this dissertation is that cache-conscious con-

current data structures for many-core systems will show significant performance

improvements over the state of the art in concurrent data structure designs for

those applications that must contend with the deleterious effects of the memory

wall. Lock-free cache-conscious data structures that maintain the abstraction of

a linearizable set have been studied previously in the context of unordered data

structures. We explore novel alternatives, namely lock-free cache-conscious data

structures that maintain the abstraction of a linearizable ordered set. The two

primary design contributions of this dissertation are the lock-free skip tree and

lock-free burst trie algorithms. In both algorithms, read-only operations are wait-

free and modification operations are lock-free. The lock-free skip tree has relaxed

structural properties that allow atomic operations to modify the tree without in-

validating the consistency of the data structure. We define the dense skip tree as

a variation of the skip tree data structure, and prove cache-conscious properties of

the dense skip tree. The proof techniques represent a significant departure from

the methods outlined in the original skip tree paper.
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We show that cache-conscious, linearizable concurrent data structures have ad-

vantageous performance that can be measured across multiple architecture plat-

forms. The improved performance arises from better treatment of the memory

wall phenomenon that is ubiquitous to current multi-core systems and almost cer-

tainly will continue to affect future many-core systems. Using a series of synthetic

benchmarks we have shown that our lock-free skip tree and burst trie implemen-

tations perform up to x2.3 and x3.5 faster in read-dominated workloads on SPARC

and x86 architectures, respectively, compared to the state of the art lock-free skip

list. The minimum performance of the skip tree across all workloads and architec-

tures is x0.87 relative to the skip list performance. An analysis of heap utilization

of the data structures in the synthetic benchmark reveals the lock-free skip tree to

use 59% of the heap utilization of the skip list and the lock-free burst trie to use

140% of the skip list heap utilization. In a series of four parallel branch-and-bound

applications, two of the applications are x2.3 and x3.1 faster when using the lock-

free skip tree as a concurrent priority queue as compared to the lock-free skip list.

In a shared-memory supercomputer architecture the two branch-and-bound ap-

plications are x1.6 and x2.1 faster with the skip tree versus the skip list running at

80 hardware threads.
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Chapter 1

Introduction

A necessary condition for peak scalability and performance on modern hardware

is application execution that is aware of the memory hierarchy. The power wall,

the instruction-level parallelism (ILP) wall, and the memory wall are driving a shift

in microprocessor design from implicitly parallel architectures towards explicitly

parallel architectures [1, 2]. The power wall represents the set of constraints im-

posed by power consumption and power dissipation issues due to decreases in

transistor size and increases in clock frequency. On-chip power dissipation now

exhausts the maximum capability of conventional cooling technologies; any fur-

ther increases will require expensive and challenging solutions (e.g., liquid cool-

ing), which would significantly increase overall system cost [3].

The ILP wall represents the limits of the exploitation of instruction-level par-

allelism. Pipelining of individual instruction execution into a sequence of stages

has allowed designers to increase clock rates as instructions have been sliced into

larger numbers of increasingly small steps, which are designed to reduce the amount

of logic that needs to switch during every clock cycle. Superscalar processors were

developed to execute multiple instructions from a single, conventional instruction

stream on each cycle. These function by dynamically examining sets of instruc-
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tions from the instruction stream to find ones capable of parallel execution on each

cycle, and then executing them, often out of order with respect to the original pro-

gram [1]. Instruction level parallelism is an implicit parallel execution technique.

Instructions are executed concurrently and out of order, while maintaining the il-

lusion that all instructions are being executed sequentially and in order. There are

limits to the amount of usable parallelism in typical instruction streams [4] and

these limits have been reached in modern hardware.

The memory wall represents a persistent disparity between memory latency

improvements and memory bandwidth improvements [5, 6]. One report on the

landscape of parallel computing found that out of thirteen broad classes of compu-

tational problems, the memory wall was the major obstacle to good performance

for almost half of these classes [2]. A separate report on the effects of memory la-

tency and bandwidth on supercomputer application performance found that dou-

bling the memory latency results in an average drop in performance of 11% for

floating point benchmarks and 32% for integer benchmarks [7]. Although the term

‘memory wall’ was initially applied to differences in both bandwidth and latency,

the flat performance of memory latency has come to dominate the memory wall.

Over the past two decades, while processor performance has doubled every 18

months, memory latency has improved only by about 7% a year [8]. Furthermore,

in the time that it takes for memory bandwidth to double, latency improves by no

more than a factor of 1.2 to 1.4 [9].

David Patterson says about the various walls: “The power wall + the memory

wall + the ILP wall = a brick wall for serial performance” [2, 10]. The major mi-

crochip manufacturers such as IBM, Sun, and Intel have all moved away from rely-

ing only on instruction-level parallelism and are moving towards utilizing thread-

level parallelism and data-level parallelism as well. While the implications of the

power wall and the ILP wall lie primarily in the hardware domain, the implications
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of the memory wall can be seen in the design of efficient algorithms for concurrent

applications.

The thesis of this dissertation is that cache-conscious concurrent data structures

for many-core systems will show significant performance improvements over the

state of the art in concurrent data structure designs for those applications that

must contend with the deleterious effects of the memory wall. Cache-conscious,

linearizable concurrent data structures have advantageous performance that can

be measured across multiple architecture platforms. The improved performance

arises from better treatment of the memory wall phenomenon that is ubiquitous

to current multi-core systems and almost certainly will continue to affect future

many-core systems.

Lock-free cache-conscious data structures that maintain the abstraction of a

linearizable unordered set have been described in the literature. The additional

constraint of maintaining sorted order poses novel research questions in the con-

struction of efficient lock-free cache-conscious data structures. A cache-conscious

design favors the organization of data in contiguous regions in order to increase

spatial locality. The lock-free approach eschews global balancing requirements in

favor of atomic update operations. An important contribution of this dissertation

is that it fills the gap in cache-conscious concurrent data structures by providing

concurrent algorithms that implement an ordered set abstract data type. A cache-

conscious unordered set stores elements with equal hash codes near each other

but many possible orderings are valid. Maintaining sorted order imposes the con-

straint of exactly one valid logical ordering of elements in the set.

The two primary design contributions of this dissertation are the novel lock-

free skip tree and lock-free burst trie algorithms. Both address the goal of develop-

ing cache-conscious concurrent data structures for those applications whose work-

ing set size exceeds the cache size. The lock-free skip tree uses comparison-based



CHAPTER 1. INTRODUCTION 4

sorting to provide expected cost O(log n) add, remove, and contains operations

in the absence of concurrent operations. The lock-free burst trie uses radix-based

sorting to provide O(|e|) operations, where |e| is the length of the input element.

In both algorithms, read-only operations are wait-free operations and modification

operations are lock-free operations.

The measures of evaluation are composed of a series of synthetic and applica-

tion benchmarks. These benchmarks are used to assess the behavioral character-

istics of the data structures. Neither synthetic nor application benchmark is ade-

quate by itself; the two types of benchmarks serve complimentary roles. A syn-

thetic benchmark measures the performance of the implementation without con-

founding factors such as application execution. An application benchmark serves

as a single data point on the overall performance of complex tasks that rely on the

data structure. Synthetic benchmarks allow various data structure implementa-

tions to be conveniently compared against one another. Application benchmarks

give a measure of expected performance when used in a productive context, but

the measure must be considered within the context of the specific application.

The measures of success are defined as reaching significant improvements for

three metrics in the measures of evaluation. The three metrics are throughput,

scalability, and memory footprint. Throughput is a measure of system-wide com-

pletion for a fixed task and a fixed set of resources. Scalability can be defined as

a derived measure of throughput where the number of processors can vary inde-

pendently. The memory footprint can be estimated using the maximum memory

consumption or average memory consumption of a fixed task.

The lock-free skip tree and lock-free burst trie behave as a best in class design

on the measures of success and outperform the best known implementations of

related data structures. A series of synthetic benchmarks show that our lock-free

skip tree and burst trie implementations perform up to x2.3 and x3.5 faster in read-
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dominated workloads compared to the state of the art lock-free skip list with only

a 13% maximum penalty across all workloads. An analysis of heap utilization

of the data structures in the synthetic benchmark reveals that the lock-free skip

tree uses 59% of the heap utilization of the skip list and the lock-free burst trie

uses 140% of the skip list heap utilization. In a series of four parallel branch-and-

bound applications, two of the applications are x2.3 and x3.1 faster when using

the skip tree as a concurrent priority queue as compared to the lock-free skip list

priority queue. The relative performance improvements for both data structures

and decreased heap utilization of the lock-free skip tree is reported on multicore

SPARC and x86 architectures. In a shared-memory supercomputer architecture

the two branch-and-bound applications are x1.6 and x2.1 faster with the skip tree

versus the skip list running at 80 hardware threads.

We have made the lock-free skip tree implementation available online [11]. The

source code for the lock-free skip tree has been released to the public domain,

as described at http://creativecommons.org/licenses/publicdomain. The Java

Specification Request (JSR) 166 group on concurrency utilities releases all of its im-

plementations into the public domain. We have implemented the ConcurrentSkip-

TreeMap and ConcurrentSkipTreeSet as drop-in replacements for the Concurrent-

SkipListMap and ConcurrentSkipListSet data structures of the java.util.concurrent

library. The intent is not for the skip tree implementations to replace the skip list

implementations of the concurrency library. Rather the lock-free skip tree is in-

tended to complement the lock-free skip list implementation in order to offer per-

formance advantages under workloads characterized in this dissertation.
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1.1 Background & Motivation

Concurrent data structure design in shared memory architecture is driven largely

by the need for scalability. Any sequential segment of a concurrent algorithm

quickly becomes a sequential bottleneck as the number of processors increases.

If b is the fraction of the program that is subject to a sequential bottleneck, then

Amdahl’s law states that the maximum speedup that can be achieved on a ma-

chine using P processors is 1/(b + (1− b)/P). For example, if 10% of a concur-

rent application is subject to a sequential bottleneck, the best possible speedup we

can achieve on an 8-way machine is about 4.7, on a 16-way machine is about 6.4,

and on a 64-way machine is only about 8.8. In order to meet increased scalability

demands, the primary synchronization model for concurrent data structures has

migrated from coarse-grained locking protocols to fine-grained locking protocols

and finally to lock-free synchronization. Lock-free data structures implement con-

current objects without the use of mutual exclusion. Mutual exclusion resource

protection schemes can suffer from performance concerns such as priority inver-

sion, lock convoying, and lock contention and liveness concerns such as starvation

and deadlock. Lock-free synchronization is achieved using a set of simple atomic

synchronization primitives. There are multiple atomic primitives that are available

on modern hardware instruction sets, and some atomic primitives are known to be

more powerful than others [12]. However, all the synchronization primitives share

the common property that they operate on one unit of memory at a time. Atomic

instructions that operate on more than one memory unit have been proposed for

future instruction sets, such as double compare-and-swap operations [13] or Iso-

tach networks [14], but this area is currently a topic of research and the merits of

these instructions are still being actively debated [15, 16].

Latency penalties for accessing shared memory in a multi-core processor are so

effective at reducing program performance that they can be used as a basis for a
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new class of denial of service attacks [17]. Memory access schedulers are designed

to maximize the bandwidth obtained from the DRAM memory. Requests from a

thread with a particular access pattern can get prioritized by the memory access

scheduler over requests from other threads, thereby causing the other threads to

experience very long delays. The processor to memory performance gap, which

is already approaching a thousand cycles, is expected to grow by 50% per year

according to some estimates. At the same time, the number of cores on a single

chip is expected to continue to double every 18 months, and since limitations on

space will keep the cache resources from growing as quickly, cache per core ratio

will continue to go down [18].

In the era of vector and specialized shared memory supercomputers, it was

quickly realized that a major limitation to the full utilization of the machine was

the inability to get data to the processing units fast enough to keep the units busy

[19, 20]. Program transformation techniques were applied to regular computa-

tional patterns (loops) in order to reduce the number of cache misses. Among these

program transformations are loop fusion, loop distribution, loop interchange, loop

unrolling, loop skewing, strip mining, etc. [21, 22]. Motivated by the improve-

ments in cache behavior of loop structured programming, researchers began con-

structing techniques to improve the locality of irregular pointer-based applica-

tions. Such pointer-based applications rely on recursive data structures such as

linked lists, trees, and graphs, where individual nodes are dynamically allocated

and nodes are linked together through pointers to form the overall structure. Soft-

ware prefetching techniques have been adapted to tree structures by prefetching

children nodes when a parent node is visited [23]. Nodes likely to be accessed

contemporaneously can be clustered into a cache block. Recursive data structures

possess locational transparency; elements in a structure can be placed at different

memory locations without changing a program’s semantics [24].
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Chapter 2 reviews consistency models, synchronization models, and related

concurrent data structures. Consistency models that are reviewed in this chap-

ter are strict consistency, sequential consistency, quiescent consistency, linearizable

consistency, serializability, strict serializability, and transactional memory seman-

tics. The limitations of mutual exclusion as a synchronization model are reviewed,

and a history of lock-free algorithm design is outlined. All modern lock-free data

structures use lock-free linked lists and arrays as building blocks in the construc-

tion of more complex algorithms. We trace the evolution of an efficient lock-free

node deletion algorithm. The relative difficulty in constructing an efficient lock-

free deletion algorithm as compared to an insertion algorithm is a theme that will

be encountered several times in this document. We review the state of the art in

lock-free skip list and lock-free concurrent hash table design. Many data structures

have been designed with concurrent, lock-free, cache-conscious, or randomized

properties. Each of the related data structures shares one, two, or three, but not all

four properties of the lock-free skip tree design.

1.2 Lock-free Skip Tree

The lock-free skip tree algorithm is a transformation of Messeguer’s skip tree [25].

It meets the dual criteria of effective use of the memory hierarchy and employment

of atomic compare-and-swap operations. The majority of nodes in the original skip

tree contain no elements. The purpose of these empty nodes is to maintain a path

length invariant. Our first objective in designing a cache-conscious isomorphism of

the skip list was to eliminate the empty nodes from the skip tree, thus the dense skip

tree. We show that the number of keys per node of a dense skip tree is distributed

according to a geometric distribution, and that the expected height of the tree of

n keys is bounded by log n. We are then able to show that the expected time for
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sequential search, insert, and delete operations is O(log n). The proofs are novel

to the dense skip tree design, and serve as a completion of the skip tree proofs that

are incomplete in the literature. Our proof techniques represent a novel departure

from the methods outlined in the original skip tree paper.

Prior to the construction of a lock-free concurrent algorithm, an initial opti-

mistic concurrent dense skip tree algorithm is constructed. This algorithm uses

an optimistic concurrency control technique where the necessary components of

the data structure are locked on the assumption that components maintain a con-

sistent state during the time period in which the locks are acquired. The opti-

mistic concurrency technique provides a clear concurrency model, yields a rela-

tively straightforward correctness proof, and performs well under workloads that

are dominated by read-only operations. The optimistic skip tree algorithm ful-

filled two objectives necessary for the construction of a lock-free skip tree algo-

rithm. First, it provided insight into transforming a sequential skip tree algorithm

into a concurrent skip tree algorithm. Second, a series of synthetic benchmarks

showed the potential of the skip tree design as a concurrent cache-conscious data

structure. When the working set size exceeds the cache size, the peak throughput

of the optimistic skip tree is 144% and 155% relative to the lock-free skip list in a

read-dominated synthetic workload on SPARC and x86 platforms. Of equal im-

portance, the peak throughput of the optimistic skip tree is 73% and 85% relative

to the lock-free skip list in a read-dominated synthetic workload for a small work-

ing set size. The results of the synthetic benchmarks suggest that it is possible to

construct an efficient lock-free cache-conscious data structure that maintains the

abstraction of a linearizable ordered set.

The lock-free skip tree algorithm is defined in Chapter 4. The lock-free skip tree

has relaxed structural properties that allow atomic operations to modify the tree

without invalidating the consistency of the data structure. The lock-free skip tree
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definition has two primary differences from the dense skip tree definition. First,

we introduce link references to allow nodes to split independently of their parent

nodes. Second, we relax the requirement that non-leaf nodes behave as partitions

on the tree. The data structure maintains consistency by defining a reachability re-

lation from the root of the tree to any potential element stored in the tree for all

possible states of the tree. As highlighted in the related work on lock-free data

structures in Chapter 2, the bulk of the complexity in the lock-free skip tree algo-

rithm is found in the deletion algorithm as compared to the insertion or search

algorithms. Optimal paths through the tree are temporarily violated by deletion

operations and eventually restored using online node compaction.

The lock-free skip tree implementation outperforms established algorithms,

namely a highly-tuned lock-free skip list, a relaxed balance AVL tree, and a Blink-

tree on synthetic benchmarks across different thread counts, operation mixes, and

machine architectures when the working set size cannot be contained in cache. The

peak throughput of the lock-free skip tree is 229% and 198% relative to the lock-free

skip list on the read-dominated workloads with 5,000,000 elements on SPARC and

x86 platforms. The lowest peak throughput of the lock-free skip tree relative to the

skip list across all synthetic benchmarks is 87%. The synthetic benchmarks have

shown that a lock-free cache-conscious data structure can perform up to x2.3 faster

in some workloads compared to the state of the art with only a 13% maximum

penalty across all workloads.

1.3 Application Benchmarks

Benchmarks that perform synthetic operations should be interpreted as measure-

ments of performance that lack semantic context or purpose. Their results can be

interpreted by individual developers to estimate the utility of the algorithm for
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their needs. The disadvantage of synthetic operations is their lack of semantic con-

text. As such, some caution must be exercised when projecting the results from the

synthetic benchmarks onto a specific application domain.

In order to ensure balance in our analysis of the lock-free skip tree we identified

a class of NP-hard problems that can be used to characterize the relative merits of

the lock-free skip tree as compared to the lock-free skip list. These applications rely

heavily on a linearizable data structure that preserves a sorted set or sorted map

abstraction.

We identified four NP-hard problems that can be solved using a parallel branch-

and-bound solver with a centralized concurrent priority queue. These problems

are the N puzzle, the graph coloring problem, the asymmetric traveling salesman

problem (ATSP), and 0-1 knapsack. In addition to the four NP-hard problems, we

created a synthetic branch-and-bound application in order to test three hypotheses

on the effects of specific properties of branch-and-bound applications on the rela-

tive performance of the lock-free skip tree versus the lock-free skip list. The three

hypotheses are: (1) the distribution of lower bounds of the candidates in the search

space affects the performance of the skip tree; (2) the computation time of the lower

bound affects the performance of the skip tree; and (3) the branching factor of the

application affects the performance of the skip tree. Based on the outcomes from

the four application benchmarks and the synthetic benchmark, we provide a set of

guidelines for selecting the lock-free skip tree to use as a centralized priority queue

in a parallel branch-and-bound application versus the lock-free skip list.

The branch-and-bound applications were tested on a sixteen core Sun Niagara

workstation, a quad core Intel Xeon workstation, and two shared memory super-

computers with different hardware instruction sets, network interconnections, and

software runtime architectures. The lock-free skip tree shows an improvement in

runtime of up to x2.4 and x3.1 on the N puzzle and graph coloring applications
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relative to the lock-free skip list. Over 99% of the total runtime of the asymmet-

ric traveling salesman problem solver is spent in the computational phase that

calculates the lower bound estimate for each partial solution. The dominance of

the computational phase precludes any significant benefit from selecting the lock-

free skip tree using the Held-Karp [26, 27] lower bound estimation for solving

ATSP. We use a primal-dual algorithm [28] for solving the knapsack problem. The

primal-dual algorithm uses an inconsistent heuristic function. Consistent heuristic

functions are general strategies for traversing through a state space that approach

the solution state without taking any backward steps [29]. The knapsack is al-

lowed to overfill so that successor states may remove elements from the knapsack.

When applied to a breadth-first parallel branch and bound solver, the inconsistent

heuristic function results in contention for the head of the priority queue.

We show that it is possible to use shared-memory supercomputers efficiently to

solve parallel branch-and-bound problems. The Azul compute appliance is a cus-

tom shared memory supercomputer designed for the Java runtime environment.

The processing unit of the compute appliance is a Vega 3 processor, a 54 core 64-bit

RISC processor. Up to 16 Vega processors can be installed on a compute appliance,

for a total of 864 hardware threads. In addition to the standard RISC instruction

set, the Vega processor has a few specialized instructions to aid the Java virtual

machine in object allocation and garbage collection. The SGI Altix UV 1000 con-

sists of 256 blade servers connected by a NUMAlink® 5 Interconnect. Each blade

holds 2 Intel Xeon X7560 processors with 8 hardware threads per processor, for a

total of 4096 hardware threads on the machine.

For those parallel branch-and-bound applications that exhibit the set of prop-

erties we have characterized for selecting the lock-free skip tree as a centralized

priority queue, on an Azul compute appliance the skip tree shows up to a x2.1

improvement in runtime as compared to the lock-free skip list when running on
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88 hardware threads. In order for an application to scale across a shared-memory

interconnection communication layer, it is necessary for all the runtime layers un-

derneath the application to scale as well. The Azul compute appliance runs on

top of a minimalist operating system and has its own Java virtual machine imple-

mentation that is based on the OpenJDK project. The SGI Altix UV 1000 runs a

modified 2.6.32.12 Linux kernel and a patched version of the OpenJDK 7 release.

Given the commercial existence of a Java compute appliance that can scale to hun-

dreds of threads using specialized hardware, a specialized operating system, and

a specialized Java virtual machine, it is most likely that significant modifications

would be necessary to achieve the same scalability on a conventional hardware

and software stack.

1.4 Lock-free Burst Trie

We study whether it is possible to improve upon the O(log n) expected cost in

designing a lock-free cache-conscious data structure that implements an ordered

set. The lower bounds for comparison-based sorted data structures are Ω(log n).

In order to improve upon these lower bounds, we must use a radix sorting scheme

as the basis of the data structure. We define the lock-free burst trie algorithm which

is the first of its kind. The lock-free trie offers a space/time tradeoff as compared

to the lock-free skip tree. Interior nodes of the lock-free trie store unused children

references in order to allow for a search through the tree that does not rely on

element comparison operations.

A series of synthetic benchmarks was studied to measure the throughput of

the concurrent trie as compared to concurrent skip list, skip tree, and Blink-tree

implementations. The burst trie exhibits the highest peak throughput across all

scenarios and architectures. The mean peak throughput of the burst trie is x3.5
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higher than the data structure with the second highest peak throughput across all

scenarios on the Sun Fire T1000 and x2.8 higher across all scenarios on the Intel

Xeon L5430. The heap utilization of all four data structures was measured for the

write scenario with five million elements on the Sun Fire T1000. The skip tree

and Blink-tree use an average of 35 bytes per element, the skip list uses an average

of 60 bytes per element and the burst trie uses an average of 84 bytes per element.

The lock-free burst trie inherits both desirable and undesirable characteristics from

its parental data structure designs, the search tree and the hash table. The trie

maintains an ordered set abstraction and exhibits a relatively higher throughput

than the lock-free skip tree on the synthetic benchmarks. In order to benefit from

the advantages of the lock-free trie it is necessary to define a prefix function on the

input domain in order to use the data structure. The tuning of three configuration

parameters plays an important role in the performance of the lock-free burst trie.

A primary objective of this research is to reconcile the algorithmic impacts of

two trends in microprocessor design that each encourages thinking about a prob-

lem in opposing views. The first trend is the shift from implicitly parallel pro-

cessors towards explicitly parallel processors. To achieve scalability on explicitly

parallel processors, blocking synchronization must be reduced or eliminated. Each

critical section constructs a sequential roadblock to parallel performance. The sec-

ond trend in microprocessor design is the deepening of the memory hierarchy.

As more cores are packed onto a processor, more transistor real estate is spent on

cache memory to keep the cores busy with sufficient data. Lock-free algorithms

concentrate on atomic primitives that operate on either one or a handful of words

at a time. Cache-conscious algorithms take into consideration cache size, line size,

associativity, and degree of sharing among cores. Nonblocking synchronization

algorithms use a model of the memory hierarchy in the small. Algorithms that

mitigate the effects of the memory wall use a model of the memory hierarchy in



1.4. LOCK-FREE BURST TRIE 15

the large. We focus on reconciling the views of the memory hierarchy in the small

and in the large for the purpose of constructing nonblocking cache-conscious con-

current algorithms.
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Chapter 2

Related Work

This chapter reviews relevant background material on memory consistency mod-

els, synchronization models, and related concurrent data structures. A memory

consistency model dictates how memory behaves with respect to read and write

operations from multiple concurrent processes [30–32]. In a uniprocess system,

a read should return the value of the “last” write to the same memory location,

where “last” is precisely defined by program order, i.e., the order in which mem-

ory operations appear in the program. In a multiprocessor system, the memory

consistency model must address the following questions regarding the passage of

time: (1) Do all processes see the same order of events? (2) Do all processes see the

correct order of events? We will review strict consistency, sequential consistency,

quiescent consistency, linearizable consistency, serializability, strict serializability,

and transactional memory semantics. In the next section, we will motivate why

linearizable consistency was selected as the consistency model for our research.

A synchronization model is defined as a set of constraints on memory accesses

that specify how and when synchronization needs to be done [33]. The traditional

model for synchronizing access to shared resources has been to use mutual exclu-

sion. We will discuss some of the disadvantages of mutual exclusion and review
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the most popular non-blocking synchronization properties: lock-freedom, wait-

freedom, and obstruction-freedom. Non-blocking synchronization allows synchro-

nized code to be executed in an interrupt or (asynchronous) signal handler with-

out danger of deadlock. Non-blocking synchronization minimizes interference be-

tween process scheduling and synchronization. A high priority process can access

a synchronized data structure without being delayed or blocked by a lower prior-

ity process. Non-blocking synchronization aids fault-tolerance. It provides greater

insulation from failures such as fail-stop processes failing or aborting and leaving

inconsistent data structures. Finally, non-blocking synchronization can reduce in-

terrupt latencies. Non-blocking synchronization first drew attention in operating

systems research, where its properties were used to construct robust, scalable sys-

tems. Later, the synchronization model was adopted for concurrent application

design. In Section 2.2, we will motivate why wait-freedom was chosen for read-

only operations and lock-freedom for update operations.

There exist many data structures that have been designed for concurrent, cache-

conscious, or randomized applications. The techniques used in this dissertation

for the design of cache-conscious concurrent data structures expand upon the con-

cepts used for the construction of the concurrent skip list and the concurrent B-

tree. Section 2.3 reviews skip lists, skip trees, treaps, randomized search trees,

cache-oblivious B-trees, and cache-conscious hash tables. The first lock-free con-

current data structures were linked lists. Lock-free deletion from a linked list was

solved by the Maged-Harris algorithm [34, 35]. A node is first logically deleted

from the linked list using an atomic operation and then subsequently it can be

physically removed from the list. The lock-free skip list is constructed as a set of

lock-free linked lists stacked on top of one another. From the concurrent B-tree, the

use of link references to travel horizontally through a multiway search tree allows

concurrent readers to find multiple paths to reach a target element in the pres-
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ence of concurrent modifications to the tree. We review the literature of lock-free

cache-conscious hashing algorithms in order to highlight the advances that have

been accomplished in the design of cache-conscious concurrent data structures. In

Chapter 6 we will show how to construct a cache-conscious lock-free hash function

that preserves the natural ordering of the elements contained in the abstract data

type.

2.1 Consistency Models

A memory consistency model dictates how memory behaves with respect to read

and write operations from multiple concurrent processes. The consistency model

of a shared-memory multiprocessor provides a formal specification of how the

memory system will appear to the programmer, eliminating the gap between the

behavior expected by the programmer and the actual behavior supported by a

system [30–32]. Effectively, the consistency model places restrictions on the values

that can be returned by a read in a shared-memory program execution. Each con-

sistency model offers a unique approach to answering the following two questions

concerning the passage of time: (1) Do all processes see the same order of events?

(2) Do all processes see the correct order of events? In this section we will discuss

the following consistency models: strict consistency, sequential consistency, qui-

escent consistency, linearizable consistency, serializability, strict serializability, and

transactional memory semantics. Our research focuses on the design of concur-

rent data structures that assume the linearizability consistency model. This sec-

tion serves to explain why linearizability has been chosen as the target consistency

model.

The simplest consistency model is known as strict consistency, and it requires

that a read operation on a location returns the result of the last write operation
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which occurred at that location. In a programming model that contains exactly

one process, the last write operation can be defined using the order of write opera-

tions in the program. In a multiprocessor system, strict consistency would require

a global clock and would place significant performance burdens on the memory hi-

erarchy. The strict consistency model provides the most straightforward answers

to the two questions regarding the passage of time. But as strict consistency is an

impractical consistency model for a multiprocessor architecture, the next simplest

consistency model addresses only the first question on the passage of time and

ignores the second question on the correct order of events.

The next simplest and the most familiar consistency model for shared memory

multiprocessors is sequential consistency. A multiprocessor system is sequentially

consistent if the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the order specified by its program

[36]. Sequential consistency is an intuitive model for multiprocessor systems. Each

process has its own local clock and the communication delays between proces-

sors are variable or otherwise unpredictable. This model enforces program order

within each individual processor, and it allows all processors to assume they are

observing the same order of events. The sequential consistency model is equiv-

alent to the abstraction where memory requests from all processors issued to an

individual memory module are serviced from a single FIFO queue. Using this ab-

straction, sequential consistency provides both an ordering of events and a mech-

anism for specifying the atomicity of events.

The sequential consistency model does not address the second question regard-

ing the passage of time: “Do all processes see the correct order of events?” In

contrast, the quiescent consistency model is defined such that the operations of

any processors separated by a period of quiescence should appear to take effect in
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Figure 2.1: A concurrent queue data structure. (A) One process enqueues x. (B) A
second process enqueues y. (C) The second process performs a dequeue operation
which returns y. This history is permitted by sequential consistency, can be either
permitted or forbidden by quiescent consistency, and is forbidden by linearizable
consistency.

their real-time order [37, 38]. Quiescence guarantees are useful in shared memory

systems where communication delays can be bounded in the absence of system

failures. Quiescent consistency ignores the first question of consistency models

regarding the passage of time and focuses on providing an answer to the second

question. An example of a scenario that is allowed in the sequential consistency

model and disallowed in the quiescent consistency model is shown in Figure 2.1.

Two processes share a concurrent queue data structure. The first process enqueues

x. At some non-overlapping subsequent interval, a second process enqueues y.

Finally the second process performs a dequeue and receives y. This example is

sequentially consistent but is not quiescently consistent, assuming that the time

between enqueue operations falls outside the quiescence interval. Quiescent con-

sistency is a compositional consistency model. A consistency model is composi-

tional if and only if the specification of every object in a system satisfies the con-

sistency model implies that the system as a whole satisfies the consistency model

[39]. Sequential consistency is not a compositional consistency model. Quiescent

consistency is useful for systems that assume a compositional consistency model,

but quiescent consistency does not preserve program order.

Linearizable consistency is the weakest consistency model that preserves pro-

gram order among individual processes and satisfies compositionality. A system
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is linearizable if the result of any execution is the same as if the operations of all

the processors were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the order specified by its program,

and any non-overlapping operations appear in the same order in the sequential

history as they appear in the execution [40]. An equivalent definition of lineariz-

ably consistency requires that all function calls have a linearization point at some

instant between their invocation and their response and all functions appear to

occur instantly at their linearization point, behaving as specified by a sequential

definition. Two overlapping operations in a linearizable system can occur in either

order in the corresponding sequential history, but two non-overlapping operations

must appear in the same order in the concurrent and sequential histories.

A transaction is defined as a sequence of operations that are executed atom-

ically. Linearizable consistency can be viewed as a special case of strict serializ-

ability where transactions are restricted to those consisting of a single operation

applied to a single object [40]. Serializable consistency is an extension of the se-

quential consistency model, where the result of any execution is the same as if the

transactions of all the processors were executed in some sequential order. Strict

serializability adds the restriction that any non-overlapping transactions appear

in the same order in the sequential history as they appear in the execution. Se-

rializability is a stronger consistency model than linearizability. The serializable

model allows programmers to reason about transactions as if they were sequential

programs. Serializability and strict serializability are not composable consistency

models, and both models are inherently blocking concurrency models. A property

is inherently blocking if it can be enforced only by blocking a transaction’s data

access operations until certain events occur in other transactions [41].

Transactional memory refers to a family of concurrency control mechanisms

that aims to support serializable consistency semantics in main memory. Support
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for transactional memory was first proposed in hardware [42] and then later ex-

tended to software-only implementations [43]. Transactional memory semantics

provide failure atomicity, consistency, and isolation. All the proposed transac-

tional memory models start with the atomic block construct. An atomic block is

required to either execute to completion or to appear not to have executed at all.

The execution of a transaction cannot affect the result of other concurrently execut-

ing transactions. Transactional memory can offer either strong or weak atomicity

semantics [44]. Weak atomicity guarantees transactional semantics only among

transactions. Strong atomicity guarantees transactional semantics between trans-

actions and non-transactional code. A program that is safe in one atomicity model

is not necessarily safe in the other model. Transactional memory semantics are of-

ten augmented with transaction coordination primitives [45]. A transaction that

executes a retry statement aborts and then re-executes. The re-execution can be

delayed until one or more values read in the previous execution are changed. The

orElse operation allows the execution of one transaction to be conditional on the

execution of a second transaction. Hardware transactional memory systems im-

pose strict limitations on program execution, while software transactional memory

that supports strong atomicity offers weak execution performance. A comprehen-

sive review of the state of the art in the design and implementation of transac-

tional memory systems, as of early summer 2006, has been written by Larus and

Rajwar [46]. The correct semantics for transactional memory models are an active

area of research. For the scope of our research, we have limited ourselves to non-

transactional memory semantics. Linearizability is appropriate for applications in

which concurrency and composability are of primary interest.
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2.2 Synchronization Models

The traditional model for synchronizing access to shared resources has been to

use mutual exclusion. However there are several disadvantages associated with

mutual exclusion. Mutual exclusion (also known as locking) causes blocking of

threads or processes that must wait until a lock is released. Locks can cause dead-

lock, due to the early termination of a thread without releasing a lock, or due to

subtle defects in the concurrent algorithm design. Undesirable effects such as pri-

ority inversion or convoying may occur [47]. Finally, lock contention limits scala-

bility in highly-concurrent environments as lock-management becomes a sequen-

tial bottleneck, as an application of Amdahl’s law. In order to sidestep these is-

sues, a series of non-blocking properties has been developed for concurrent data

structures. The most widely-used non-blocking properties are lock-freedom, wait-

freedom, and obstruction-freedom.

The most popular non-blocking property is lock-freedom. A lock-free imple-

mentation of a concurrent data object is one that guarantees that some operation

is always making progress towards completion regardless of any other concurrent

operations in the system [48]. The lock-free property guarantees that some opera-

tion will complete after a finite number of steps. A wait-free implementation of a

concurrent data object guarantees that all operations are always making progress

towards completion [48]. The wait-free property guarantees that all operations

must complete after taking a finite number of steps. The wait-free property yields

guaranteed system-wide throughput and starvation-freedom, while the lock-free

property allows individual threads to starve but guarantees system-wide through-

put. A lock-free data structure will typically have a lower computational overhead

than its wait-free counterpart, and will rely on well-known contention manage-

ment techniques such as backoff [49] in order to achieve practical progress guaran-

tees. Obstruction-freedom is a more recent non-blocking property that guarantees
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that some operation will complete after a finite number of steps, provided that

all other operations are suspended [50]. Obstruction-freedom is strong enough

to avoid the problems associated with locks, but it is weaker than previous non-

blocking properties. Obstruction-freedom allows for simple implementations of

concurrent algorithms, with the hope that these implementations can be made as

efficient as lock-free or wait-free implementations.

Numerous universal construction techniques have been published on automat-

ically converting a sequential data structure into a lock-free or wait-free data struc-

ture. A comprehensive summary of these techniques can be found in Fraser’s

dissertation [51]. Yet these universal constructions exhibit poor performance in

practice when compared to human designed non-blocking algorithms. The most

efficient of these universal constructions require either nestable lock-linked/store-

conditional primitives, or double compare and swap primitives, or scheduler acti-

vation support.

The scalability of non-blocking algorithms has made them desirable in several

modern concurrency libraries. The Java 6 concurrency library includes a wait-free

queue (based on the algorithm of Michael and Scott [52]), a hash table with an ar-

bitrary number of concurrent readers and a tunable number of concurrent writers,

and a lock-free skip list written by Lea [53] extended from a paper by Fraser and

Harris [54]. Microsoft’s .NET Framework currently supports atomic operations

for shared variables, allowing operations such as read & write registers, swap,

and compare and swap. The next version of .NET Framework concurrency library

will contain implementations of lock-free stack and queue algorithms. The Intel

Threading Building Blocks (TBB) library is a runtime-based parallel programming

model for C++. The TBB library offers concurrent linearizable vector, queue, and

hash table implementations [55]. Several studies indicate that non-blocking data

structures can provide superior performance to traditional implementations using
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mutual exclusion, such as the study by Michael and Scott [56] of concurrent data

structures in microbenchmarks and real applications, or the study by Lumetta and

Culler [57] of concurrent access to message queues.

2.3 Concurrent Data Structures

There exist many data structures that have been designed with concurrent, cache-

conscious, or randomized properties. Many related data structures exhibit one or

two, but not all three properties. The data structures reviewed in this section are

summarized in Table 2.1 and their properties of interest are enumerated.

2.3.1 Skip Lists, Linked Lists, and Skip Trees

The sequential skip list [58] and the concurrent skip list [59] were invented by Bill

Pugh. A skip list is a linked list data structure where each node contains some

number of express lanes that skip ahead into the list. The height of an express

lane determines how many nodes to skip ahead. An express lane of height h skips

ahead 2h nodes. When a node is inserted into the tree, it is assigned a height from

a geometric probability distribution. A node of height h contains express lanes for

heights {0, 1, 2, . . . , h − 1, h}. The skip list has an amortized cost of O(log n) for

Data Structure Concurrent Cache-conscious Randomized Sorted Order

Lock-free skip list Y N Y Y
Treap/Randomized search tree N N Y Y

Cache-oblivious B-tree Y N Ya Y
Lea ConcurrentHashMap Y closed address N N

Purcell and Harris Hash Table Y open address N N
Hopscotch Hash Table Y open address N N

HAT-trie N Y N Y

arandomized cache-oblivious B-tree algorithm does not support deletions

Table 2.1: Properties of Related Data Structures
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Figure 2.2: Skip list example

search, insert, and delete operations. An example skip list is shown in Figure 2.2.

The local balancing of the skip list has made it an attractive data structure in a

variety of distributed applications, such as constant-degree routing networks [60],

peer-to-peer filesystems [61, 62], and concurrent lock-free ordered sets, ordered

maps, and priority queues [51, 63–65].

The first lock-free concurrent data structures were linked lists. As many sub-

sequent lock-free algorithms adapted techniques from the lock-free linked list,

we provide a basic introduction to the lock-free linked list. Valois [66] defined

a lock-free linked list algorithm using the compare-and-swap (CAS) synchroniza-

tion primitive. Each node of the linked list stores one or more fields of data and

a next field that stores a reference to the next node in the list. Insertion into the

linked list is a straightforward process. To insert a new node at the successor of

some node x, a new node y is created such that y.next is assigned the value of

x.next, and then a CAS is performed on x.next to update its value to y.

Deletion of elements is a trickier process. An attempt to remove y by perform-

ing a CAS on x.next to update its value to y.next can lead to the accidental dele-

tion of the successor of y that is inserted after the value of y.next is read. Valois

solves the node deletion problem with auxiliary nodes that maintain consistency

of the linked list and contain no actual data. Every regular node in the linked list

must have an auxiliary node as its predecessor and successor. Harris [34] provides

an alternate construction of a lock-free linked list that avoids the wasted space

of auxiliary nodes. A node is first logically deleted from the linked list using an
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Figure 2.3: Doug Lea’s lock-free skip list. Figure adapted from java.util.concurrent
ConcurrentSkipListMap documentation [53].

atomic operation and then subsequently it can be physically removed from the list.

The next field contains both the marked or unmarked state or a node and a refer-

ence to the next node in the list. Using this design, a marked node cannot have a

new node inserted as its successor. Michael [35] presents a similar design for the

lock-free linked list, with the addition of a tag field that is useful in runtime sys-

tems that require explicit memory management. This separation of concerns of the

logical removal of an element from the abstract set and the physical removal of an

element from the data structure is repeated in subsequent lock-free data structure

designs.

The skip tree was introduced by Messeguer [25] as a generalization of the skip

list for concurrent operations. A skip tree is a randomized multiway search tree

such that each new element is assigned a height from a geometric distribution. El-

ements are stored in the leaves of the tree, and the interior nodes of the tree serve as

partitions. An example skip tree is shown in Figure 2.4. The isomorphism between

the skip list and the multiway search tree has been noted in other publications [67–

70]. Messeguer defines the skip tree with the requirement that all paths from the

root to the leaves are of identical length. To enforce this requirement, empty nodes

are inserted into the tree that contain no data. These empty nodes are similar to

the auxiliary nodes in Valois’ lock-free linked list [66].
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Figure 2.4: Skip tree example. Isomorphic to Figure 2.2.

The lock-free skip list implementation in the concurrency collections of the Java

class library was written by Doug Lea with assistance from members of Java Com-

munity Process JSR-166 Expert Group and released into the public domain [53].

Unlike in a traditional skip list, the levels of a node are separated from each other.

This separation allows for concurrent modifications to occur at different levels of

the same node. An example of the segmented design is shown in Figure 2.3. In-

teger values on the left-hand side of the diagram indicate the level of the skip list,

and letter values in the bottom level indicate elements of the container in sorted

order. Element insertion begins with a traversal through the list to find the correct

location at the leaf level. An element is a member of the abstract set if-and-only-if

the element has been inserted at the leaf level of the list. Subsequent to the in-

sertion at the leaf level, corresponding index nodes are added when the selected

random height is greater than 0. A shifted geometric distribution is used such that

approximately 75% of all heights are 0, and the remaining heights are generated

by a geometric distribution with a probability of success at 1/2.

Element deletion in the lock-free skip list uses a two-step scheme to distinguish

between the tasks of removing an element from the abstract set and blocking addi-

tional elements from insertion onto a deleted node. These two tasks are typically

combined into a single step. A boolean mark is attached to an atomic reference as

described earlier in our review of Harris [34] and Michael [35]. An atomic mark-
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able reference is implemented as boxed values at the language level, rather than

the traditional method of bit stealing from address pointers. This leads to some

space and time penalties associated with using boxed values. An element is log-

ically deleted from the abstract set using a compare-and-swap on the value at a

node from non-null to null. At the end of step one, additional nodes may be in-

serted at the tail of the deleted element. In the second step, the tail of the deleted

element is replaced with a marker node. The marker node is used to signify that no

more nodes can be inserted onto the tail of the deleted node. Eventually, the pre-

decessor of the deleted node can replace its tail with the successor of the marker

node.

2.3.2 Treaps, Randomized Search Trees, and Cache-Oblivious Trees

The treap and the randomized search tree are two related random binary tree data

structures [69, 71]. In both cases, nodes are inserted in an in-order fashion by their

keys, and are heap-ordered by their priorities which are randomly distributed.

The treap selects random numbers from an unbounded uniform distribution, and

the randomized search tree selects numbers from a uniform distribution bounded

at the current number of keys. There are some similarities between the random

binary trees and the dense skip tree, but the dense skip tree cannot be described

simply as a treap or a randomized search tree implemented with a B-tree. The

random binary tree uses uniform random priorities to create a binary tree that

is probabilistically balanced. Likewise, the dense skip tree uses random heights

to create a multi-way search tree that is probabilistically balanced. However, the

skip tree uses a geometric distribution for the random heights in order for the

number of keys per node to be a geometric distribution. A skip tree with a uniform

distribution for the random heights would not be a cache-conscious data structure.

Cache oblivious algorithms are designed to perform asymptotically optimally
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on a memory hierarchy of an unknown number of levels and line sizes [72]. Three

concurrent cache-oblivious B-tree designs are proposed by Bender et al. [73]. One

of the designs selects the height of a key from a random distribution. This design

supports concurrent search and insert operations, but neither concurrent nor se-

quential delete operations. In addition, the probability distribution that a key is

promoted from height h − 1 to height h is 2−αh−1

α−1 , which is a function of h. Any

cache-oblivious design has been shown to perform at best (log2 e)(logB N) mem-

ory transfers per search operation under a 2-level memory model, where B is the

cache-line size and N is the number of keys in the data structure [74]. The cache-

oblivious B-tree is concurrent, randomized (with no deletions), and asymptotically

optimal on an arbitrary memory hierarchy, but the lower bound of the search cost

is approximately 44% higher than a cache-conscious design.

Numerous techniques have been developed for the cache-conscious access of

data within the framework of a multilevel memory hierarchy. These techniques

include loop transformation [75, 76], data coloring [24], garbage collection [77], dy-

namic profiling [78], cache-conscious structure layout [79–81], and cache-oblivious

structure layout [82, 73]. Static methods for cache-conscious program transforma-

tion have traditionally performed well on dense matrix programs. Pointer-based

structures are usually transformed into cache-conscious structures by enforcing

spatial locality at the expense of memory fragmentation. One of the contributions

of this dissertation is the introduction of a randomization technique that induces

an expected cache-conscious access of data, but does not impose a size constraint

on each component of the data structure and therefore does not suffer from inter-

nal memory fragmentation.
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2.3.3 Concurrent Hash Tables

Three concurrent hash table algorithms will be reviewed in this section: Lea’s Con-

currentHashMap, Purcell and Harris’s non-blocking hash table with open address-

ing, and Herlihy et al.’s hopscotch hashing algorithm. These concurrent hash table

algorithms are representative of the design choices available for scalable hash table

implementations. Lea’s ConcurrentHashMap is a part of the Java SE concurrency

library [83]. The ConcurrentHashMap is a closed addressing algorithm and uses

linked lists for the hash chains. Locks are striped across the bucket array, and the

number of locks is specified at the construction of the data structure. The primary

relevant feature of the ConcurrentHashMap is that only the values in a bucket

chain are mutable. Modifying the keys of a bucket chain is only possible by mod-

ifying the reference to the head of the chain. The lock associated with the target

hash bucket is always acquired by an insertion or deletion. An insertion operation

creates a new list head if the key is missing from the chain. A deletion opera-

tion creates a new chain that is a clone of the old chain with the target element

removed. The search operation traverses a chain without acquiring a lock. If the

target key is found, then the value of the key is returned. If the key is not found,

then the lock associated with the bucket is acquired and the search is repeated. The

ConcurrentHashMap is designed such that successful search operations are wait-

free operations. This feature along with the fine-grained locking protocol yields

impressive performance for many concurrent applications.

Purcell and Harris published the first non-blocking hash table based on open

addressing [84]. Each bucket stores an upper-bound on the number of collisions

currently hashing to the same bucket. An insertion that increases the number of

collisions increments the upper-bound, and a deletion that empties the last bucket

in the collision sequence searches back for the previous collision and decreases the

bound accordingly. A deletion that searches back for the previous collision enters
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Figure 2.5: Hopscotch hash insertion. Items within the same neighborhood share
the same shade of gray. (1) An item hashes to position i. (2) The first available
location k is found. (3) Positions j1 and k can be swapped because they lie in the
same neighborhood. (4) Positions j2 and j1 can be swapped because they lie in the
same neighborhood. The new item is inserted at j2.

a so-called scanning phase to perform this operation. A scanning bit assigned to

each bucket is used to ensure that at most one thread per bucket is in the scanning

phase. A successful insert operation clears the scanning bit. A successful delete op-

eration also clears the scanning bit. A delete operation that empties the last bucket

in the collision sequence signals the beginning of scanning by setting the scanning

bit. At the end of the scanning phase, if the scanning bit is true and the collision

bound has its original value, then there have been no concurrent updates. Other-

wise, the scanning phase is retried. As an open addressed lock-free hash table, this

design has a low memory footprint (no link chains are created during runtime)

and no sequential bottlenecks. The Purcell and Harris algorithm performs best at

low table densities, in contrast to the next algorithm that continues to deliver good

performance when the hash table is more than 90% full.

The hopscotch algorithm defines a class of concurrent cache-conscious resiz-

able hash tables with O(1) expected time for contains, add, and remove operations

[85]. Hopscotch hashing uses an open addressed hashing scheme in which each

bucket contains a neighborhood of buckets. The neighborhood of some bucket i

consists of the next H − 1 contiguous buckets, for some constant H. The cost of
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Figure 2.6: HAT-trie data structure. Traveling from one trie node to another con-
sumes a single letter. The figure is adapted from Askitis and Sinha [86].

finding some element in a bucket is identical or very close to the cost of finding the

element in that bucket’s neighborhood. Note that nearby buckets have partially

overlapping neighborhoods. This observation is critical to the design of the hop-

scotch hashing algorithm. Each bucket contains some meta-data about its neigh-

borhood known as ‘hop-information.’ The hop-information keeps track of which

entries in the neighborhood actually hashed to the original bucket (as neighbor-

hoods partially overlap). When an item is to be inserted with hash value i, one

of three possible outcomes will occur, as shown in Figure 2.5 : (i) if bucket i is

empty, then the item is inserted there; (ii) otherwise, if the neighborhood of bucket

i contains an available bucket, then the item is inserted into the neighborhood; (iii)

otherwise, then use linear probing to locate the first available bucket k. Then select

a bucket j such that i < j < k, and j and k are in a common neighborhood. The

contents of j are moved into k, and this process is repeated until the neighborhood

of i has an available bucket. In the concurrent hopscotch hashing algorithm, a set

of locks is striped across the bucket array.

The burst trie is a cache-conscious prefix-tree data structure for storing strings

while maintaining sort order [87]. The burst trie algorithm has O(m) worst-case

time complexity for contains, add, and remove operations, where m is the length

of the string. A trie is a multi-way search tree in which each node of the tree cor-
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responds to a common prefix of a set of words [88]. Each node of a trie contains

an array of pointers whose length is equal to the size of the alphabet. Thus the

trie is a very space-intensive data structure. Numerous techniques have been de-

veloped to reduce the memory footprint of a trie. These techniques are reviewed

by Askitis and Sinha [86]. These techniques rely on either internal fragmentation

using compaction or on trading space for time using compression. The HAT-trie

is a cache-conscious burst trie where the leaves of the trie are collapsed into array

hashes called buckets [86]. All of the strings inside a bucket share a common pre-

fix. A bucket is a fixed-size contiguous region of memory. When a bucket cannot

store any more strings, then the bucket is burst into a trie node with multiple buck-

ets. The new smaller buckets form the leaves of the new trie node. Searching for a

string is a two-step process, first with O(m) time complexity for traversing through

the trie nodes and then O(1) time complexity for searching through a bucket (see

Figure 2.6).

Lock-free cache-conscious data structures that maintain the abstraction of a lin-

earizable set have been studied previously in the context of unordered data struc-

tures. We explore novel alternatives, namely lock-free cache-conscious data struc-

tures that maintain the abstraction of a linearizable ordered set. The Messeguer

skip tree [25] definition will be modified to generate the dense skip tree. The dense

skip tree is then modified to construct the lock-free skip tree. To construct a radix-

based linearizable ordered set, the burst trie [87] definition will be modified to

generate the lock-free burst trie. For each transformation of one data structure

into a novel alternative, we will highlight the challenge of adding a new invariant

onto the data structure while preserving the remaining original properties of the

algorithm.
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Chapter 3

Dense Skip Tree & Optimistic

Concurrent Skip Tree

The skip tree was introduced by Messeguer [25] as a generalization of the skip list

for concurrent operations. A skip tree is a randomized multiway search tree such

that each new element is assigned a random height from a geometric distribution.

Elements are stored in the leaves of the tree, and the interior nodes of the tree serve

as partitions. The isomorphism between the skip list and the multiway search tree

has been noted in several publications [67–70]. The skip tree uses a cooperative

algorithm to support contains, add, and remove operations. Local rules are de-

fined which operate on nodes in the tree until no more preconditions are met. The

locality of the rules ensures that only a constant number of nodes is locked per

operation at any point in time. The cooperative rules are inspired by the on-the-

fly garbage collection algorithm of Dijkstra et al. [89]. The cooperative algorithm

encompasses all three operations on the data structure. It is undesirable that the

read-only contains operation must wait for all concurrent add and remove opera-

tions to terminate before it can return a result, allowing the possibility of starvation

for contains operations.
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The majority of nodes in the skip tree contain no elements. The purpose of

these nodes is to maintain the path length invariant in the tree. Our first objective

in designing a cache-conscious isomorphism of the skip list was to eliminate the

empty nodes from the skip tree. In the next section, we introduce the dense skip

tree as a variation on the skip tree that eliminates the path length invariant from

the data structure. Using the dense skip tree definition, we prove that the sequen-

tial expected running time of contains, add, and remove operations is O(log n).

Upon showing that the dense skip tree has the same asymptotic performance as

the skip list, we construct an optimistic concurrent skip tree as an initial phase in

the design of a lock-free skip tree algorithm. Optimistic synchronization is a tech-

nique in which the necessary components of the data structure are locked on the

assumption that components maintain a consistent state as the locks are acquired.

Once the locking phase is complete, then the optimistic algorithm performs a con-

sistency check on the components to verify that the assumption is correct. If the

components are consistent, then a modification to the data structure may proceed.

If the components are not consistent, then the locks are released and the operation

is attempted again.

In the optimistic skip tree implementation the contains operation is wait-free,

i.e. an operation with an upper bound on the number of steps before the oper-

ation is completed. Under the read-dominated scenario and a working set size

that exceeds cache size, the optimistic skip tree attains x1.4 lock-free skip list peak

throughput on a Sun Fire T1000, and x1.6 of the lock-free skip list peak throughput

on a quad-core Intel Xeon. Given this knowledge, we can evaluate the optimistic

skip tree implementation using synthetic benchmarks and use the performance re-

sults for the read-dominated scenarios as indicators of the performance of a lock-

free skip tree algorithm.
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Figure 3.1: Skip tree example

3.1 Skip Tree

Definition 3.1. A skip tree [25] is defined to be a multiway search tree, such that the

following properties hold for all nodes:

(D1) Each node contains k keys in sorted order, and k + 1 possibly-null child
references for k ≥ 0.

(D2) Each node has a height h for h ≥ 0.

(D3) Each key is assigned a random height at insertion.

(D4) A node with height h has children with height h − 1. Nodes at zero
height do not have children.

(D5) The left subtree of any key contains only keys of lesser or equal value.
The right subtree of any key contains only keys of greater value.

An example skip tree is shown in Figure 3.1. A leaf node is a node with height

0. The root node is the node with the maximum height. In the skip tree, all paths

from the root node to a leaf node have the same length. A skip tree node with 0

keys is defined as an empty node. The skip tree consists predominantly of empty

nodes, in order to maintain the path length invariant.

The skip tree implements a sorted set abstract data type. Three operations are

supported: add(v) adds v to the set and returns true iff v was not already in the

set; remove(v) removes v from the set and returns true iff v was in the set; and

contains(v) returns true iff v is in the set. A contains operation traverses the
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Figure 3.2: Split and join examples. Figure adapted from Messeguer [25].

search tree from the root node to a leaf node. An element is a member of the

abstract set if-and-only-if the element is stored in a leaf node. An add operation

begins in the same fashion as a contains operation, searching the tree from the

root node to a leaf node. If the element is found at a leaf node then the operation

returns false. If the element is not located then it is inserted into the leaf node.

A random height is generated and a copy of the element will be inserted at the

interior of the tree when the height is greater than zero. A remove operation seeks

out the target element in the leaf nodes. If the element is not located at a leaf node

then the operation returns false. If the element is found then it is deleted from the

leaf node.

To insert a copy of an element in the interior of the tree, a series of splitting

procedures is performed on the tree. A split procedure accepts a node and an

element selected from the node, and transforms the node into two sibling nodes

at the same height of the tree. The selected element in the split procedure, known

as the splitting element, is pushed into the parent of the original node. When the

splitting element is the leftmost or rightmost element of the node, then the newly

created sibling node will be an empty node. To remove empty leaf nodes, the

inverse of a split procedure is performed which is known as a join. Examples of

split and join procedures are shown in Figure 3.2.
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(a) dense skip tree (b) Ki and Hi vectors

Figure 3.3: A dense skip tree with corresponding Ki and Hi vectors

3.2 Dense Skip Tree

The dense skip tree is defined as a compact variation on the skip tree data structure.

The dense skip tree definition shares properties (D2), (D3), (D5), and (D6) from the

original skip tree. (D4) is relaxed in the dense skip tree to permit any monotonic

decreasing relationship between parent and children heights. With this relaxation,

the existence of nodes with zero keys is no longer necessary.

Definition 3.2. A dense skip tree is defined to be a variant of the skip tree, such that

the following properties are different:

(D1’) Each node contains k keys in sorted order, and k + 1 possibly-null child
references for k ≥ 1.

(D4’) A node with height h has children with heights that are less than h.
Nodes at zero height do not have children.

An example of a dense skip tree is shown in Figure 3.3(a). The number above

each node indicates the height of that node.

In this section we will show that the number of keys per node of a dense skip

tree is distributed according to a geometric distribution, and that the expected

height of the tree of N keys is bounded by logQ N. Combining these two results

will yield the claim that the expected time for search, insert, and delete opera-

tions is O(logQ n). Property (D3) of the dense skip tree definition assigns random
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heights to each key, which is clearly not a specification of the number of keys per

node. The proofs are novel to the dense skip tree design, and serve as a completion

of the skip tree proofs that are outlined by Messeguer [25]. The proof techniques

used in this chapter represent a significant departure from the methods outlined

in the original skip tree paper.

Let H indicate the random variable for the height of some key in the tree. Let

H be distributed according to a geometric distribution:

Pr(H = h) = qh p where p + q = 1 and Q = 1/q

A Markov chain is a random process with the property that the next state de-

pends only on the current state. Assume a set of states, Σ = {s1, s2, . . . , sr}. The

Markov chain starts in one of these states and moves successively from one state

to another. If the chain is currently in state si, then it moves to state sj with a prob-

ability denoted by pij. The probabilities pij are known as transition probabilities.

The transition probabilities do not depend on which states the chain was in before

the current state. The transition probabilities can be represented in a square ma-

trix, known as the transition matrix, where entry (i, j) represents the probability of

transitioning from si to sj [90].

Define the size of a skip tree node to be the number of elements that are con-

tained within the node. Let the random variable S represent the node sizes of a

dense skip tree.

Theorem 3.1. The mean value of S is 1/q and the variance of S is p/q2.

Because the heights are assigned to keys independently of the natural ordering

of the keys, we may sort the heights based on the natural ordering of the keys in the

data structure. Then let Hi represent the height of key Ki in some sorted sequence

of keys {K0, K1, K2, . . .} as in Figure 3.3b. The size of a node is the number of
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keys in the sequence observed with height Ho = h, before a key is found with

height greater than h. This is because smaller heights do not divide the current

node, while larger heights signal the start of a new node. The sequence of heights

{H0, H1, H2, . . .} can be characterized by a Markov chain with three possible states

for each Hi random variable:

(INC) Increment state :
(Hi = h) and (H0, H1, H2, . . . , Hi−1 ≤ h)

(NEU) Neutral state :
(Hi < h) and (H0, H1, H2, . . . , Hi−1 ≤ h)

(TER) Terminating state :
At least one of {H0, H1, H2, . . . , Hi} is greater than h. This is an absorb-
ing state.

The transition matrix A for the sequence of heights is denoted by:

A =
INC

NEU

TER

INC NEU TER
p(H = h) p(H < h) p(H > h)

p(H = h) p(H < h) p(H > h)

0 0 1


=


qh p 1− qh qh+1

qh p 1− qh qh+1

0 0 1


A state in a Markov chain is said to be absorbing if it is impossible to leave the

state. A state that is not an absorbing state is known as a transient state. A Markov

chain is an absorbing chain if-and-only-if it has at least one absorbing state, and

from every state it is possible to eventually reach an absorbing state. The termi-

nating state (TER) in the sequence of heights is an absorbing state. The increment

and neutral states (INC and NEU) are transient states. The transition matrix for

any absorbing Markov chains can be transformed into canonical form, such that

the absorbing states form the bottommost rows and rightmost columns. Let Θ rep-

resent the transition matrix for the transient states in an absorbing Markov chain.

For an absorbing Markov chain the matrix F = (I−Θ)−1 is called the fundamental
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matrix of the Markov chain. The entry fij of F gives the expected number of times

that the process is in the transient state sj if it started in the transient state si [90].

Θ = INC

NEU

INC NEU p(H = h) p(H < h)

p(H = h) p(H < h)

 =

 qh p 1− qh

qh p 1− qh



F = (I −Θ)−1 =

 1− rp 1− r

−rp r


−1

=

 1/q 1/qr− 1/q

p/q 1/qr− p/q

 where r = qh

To determine the expected size of a node in the dense skip tree, we are searching

for the number of times the sequence of heights is equal to the value h, prior to the

first assignment Hi > h. The transient state of interest is INC which means that

s f = INC. As we have assumed that Ho = h, then the initial state si = INC.

Combining these observations, the expected value for the size of a node in a dense

skip tree is entry f1,1 of the fundamental matrix F. The variance of the node size is

entry v1,1 of the variance matrix V that has been shown to equal F(2Fdg − I)− Fsq

[91]. Fdg is derived from F by setting each off-diagonal entry of F to zero. Fsq is

computed by squaring each entry of F.

Fdg =

 1/q 0

0 1/qr− p/q


Fsq =

 1/q2 (1/qr− 1/q)2

p2/q2 (1/qr− p/q)2


Let s = 1/q(1/r− 1) and t = 1/q(1/r− p).
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V = F(2Fdg − I)− Fsq

V =

 2/q2 − 1/q s(2t− 1)

2p/q2 − p/q s(2t− 1)

−
 1/q2 s2

p2/q2 t2

 =

 p/q2 s(2t− 1)− s2

p/q2 s(2t− 1)− t2


We have shown that the mean value of S is f1,1 = 1/q and the variance of S is

v1,1 = p/q2. �

Theorem 3.2. The probability mass function of S is Pr(S = s) = ps−1q for s ≥ 1.

To determine the probability mass function of S, reduce the problem to a game

from probability analysis. The game consists of independent turns (τ) at which

one of three mutually exclusive events can occur [92, 93]. The events have been

labeled with their transition states from the Markov process. It is a single-player

game that begins with a score of zero.

(INC) The game continues with the addition of one point to the score.

Let a = Pr(τ = INC) = Pr(H = h) = qh p.

(NEU) The game continues without addition to the score.

Let b = Pr(τ = NEU) = Pr(H < h) = 1− qh.

(TER) The game terminates without addition to the score.

Let c = Pr(τ = TER) = Pr(H > h) = qh+1.

Let X represent the random variable for the number of points scored in a game.

The probability mass function of X will be determined through its probability gen-

erating function. A probability generating function transforms a probability mass

function into another space where a solution can be determined, and then the so-

lution is transformed back into the space of probability mass functions.
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The generating function of a discrete random variable is a power series rep-

resentation of the probability mass function. Given that X is a discrete random

variable taking on non-negative values, then the probability generating function

of X is defined as

gX(z) = E(zX) =
∞

∑
k=0

Pr(X = k)zk.

The generating function of X is determined by application of the partition the-

orem for expectation. The partition theorem breaks down the first transition of

the game into the three possible outcomes, related to INC, NEU, and TER. The

variables a, b, and c are defined on the previous page.

E(X) = Pr(τ = INC) · E(X|τ = INC) + Pr(τ = NEU) · E(X|τ = NEU)

+Pr(τ = TER) · E(X|τ = TER)

E(X) = a·E(X|τ = INC) + b · E(X|τ = NEU) + c · E(X|τ = TER)

gX(z) = E(zX) = a · E(zX|τ = INC) + b · E(zX|τ = NEU) + c · E(zX|τ = TER)

Each expectation is transformed so that the knowledge of the first transition is

no longer necessary. If the first transition is to the INC state, then this transition

can be ignored provided that we increment all the possible outcomes of X by 1.

If the first transition is to the NEU state, then this transition can be ignored and

the game continues to be played. If the first transition is to the TER state, then the

game is terminated with a final score of 0. These transformations are all possible

due to the memoryless property of the Markov chain.
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E(zX|τ = INC) = E(zX+1) = zE(zX) = zgX(z)

E(zX|τ = NEU) = E(zX) = gX(z)

E(zX|τ = TER) =
∞

∑
k=0

zk Pr(X = k|τ = TER) =
0

∑
k=0

(zk)(1) +
∞

∑
k=1

(zk)(0) = 1

gX(z) = a · zgX(z) + b · gX(z) + c

=
c

1− b− za
=

c
1− b

(
1− za

1− b

)−1

=
c

1− b

∞

∑
k=0

(
za

1− b

)k
=

c
1− b

∞

∑
k=0

zk
(

a
1− b

)k

The remaining task is to transform the probability generating function gX(z)

back into the probability mass function Pr(X = x). The expression (1− y)−1

is rewritten as the geometric distribution
∞

∑
k=0

(−y)k for y = za(1 − b)−1. In this

form the definition of the probability generating function can be applied E(zX) =
∞

∑
k=0

zk Pr(X = k) to extract the value of Pr(X = k).

Pr(X = k) =
c

1− b

(
a

1− b

)k
=

qh+1

1− (1− qh)

(
qh p

1− (1− qh)

)k

= pkq

Pr(S = s) = Pr(X = s− 1) = ps−1q for s ≥ 1

The reduction to the problem of computing node size is made by S = X + 1, as

X fails to account for the initial key K0 with height H0 = h. �

Corollary 3.1. The contains, add, and remove operations on a dense skip tree have

expected cost O(logQ n).

To derive estimates for the height of the tree, let Mn represent the maximum

height observed on a sequence of n keys. Mn is an upper bound on the longest

path from the root to the leaves of the tree. It has been shown that E(Mn) =

logQ n +
γ

L
+

1
2
− δ(logQ n) +O

(
1
n

)
, where L = log Q, γ is Euler’s constant, and
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δ(x) is a periodic function of period 1 and mean 0 [94]. Thus the expected height of

the tree is bounded by logQ n for n� 0 as logQ n is the dominating term. Theorem

3.1 has shown that the expected size of a node is a constant. If the expected height

of the tree is bounded by logQ n, then the expected cost for search, insert, and

delete operations is O(logQ n).

Theorem 3.3. The dense skip tree has fewer pointers per item than either a binary

tree or a skip list.

The space efficiency of the dense skip tree can be estimated by the expected

number of pointers per element of the tree. Keys cannot migrate up or down the

tree once they have been inserted. Therefore leaf nodes do not need storage al-

located for children pointers. p is the fraction of keys that reside at the leaves of

the tree, while q is the fraction of keys that reside above the leaves. The expected

number of pointers per node in the upper level of the tree is equal to the expected

number of keys per node plus one. Therefore the expected number of pointers per

key is: q · (E(S) + 1) + p · (0) = q · (1
q + 1) + 0 = 1 + q. This is more space-efficient

than the expected number of pointers per key in a binary tree (2 pointers per key)

and the expected number of pointers per key in a skip list (1/p pointers per key).

The basic operations on a dense skip tree share the same asymptotic costs for

their expected values as the skip list and the skip tree. The asymptotic expected

costs of contains, add, and remove operations on dense skip trees, skip trees, and

skip lists equal the asymptotic worst-case costs of these operations on balanced

binary trees.

3.3 Optimistic Concurrent Skip Tree

The concurrent dense skip tree algorithm implements a linearizable [40] sorted set

data type. Three operations are supported: add(v) adds v to the set and returns



3.3. OPTIMISTIC CONCURRENT SKIP TREE 47

(a) before insertion (b) locking phase (c) after insertion

Figure 3.4: The insertion of key 24 at height 1. Modified nodes are shaded.

true iff v was not already in the set; remove(v) removes v from the set and re-

turns true iff v was in the set; and contains(v) returns true iff v is in the set. An

optimistic locking strategy has been adopted. An optimistic concurrent algorithm

provides a clear concurrency model, yields a relatively straightforward correctness

proof, and can perform as well as the best previously known lock-free algorithms

under common search patterns [95].

The operations of an optimistic concurrent algorithm traverse a data structure

without acquiring locks. Once all nodes to be modified have been located, the

operation enters a locking phase. In the locking phase, first a set of nodes is locked

and then the locked nodes are checked for consistency. If the set of locked nodes is

not consistent, then the nodes are unlocked and the operation is retried. Otherwise

the operation may execute to completion. Each node is augmented with a boolean

linked field that is true iff the node is attached to a parent with a linked field of

true. Additionally, the root node of a concurrent dense skip tree is defined as a

sentinel node. A sentinel node has a height of ∞, stores zero keys and one child,

and has a linked field that is always true.

The contains, add, and remove operations all traverse a path through the data

structure. Starting from the sentinel node, the operation iteratively searches for

the next node that would contain the target key, given rules (D5) and (D6) of the

data structure. A contains operation terminates at the end of the traversal, and
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(a) before deletion (b) locking phase (c) after deletion

Figure 3.5: The removal of key 40 from a dense skip tree. Modified nodes are
shaded.

returns whether or not the target key was located along the path. An add operation

terminates at the end of the traversal if the target key is located. If the target key is

not located, then a subset of the nodes along the path is locked. Given a random

height h, the nodes in the path with a height less than or equal to h are locked, and

the parent of the tallest node from this set is also locked. An example of the locking

phase for an add operation is shown in Figure 3.4b. A validation step checks that

all locked nodes have a linked field of true, and that each node along the locked

path contains a parent along the locked path. Finally the key can be inserted and a

split operation is performed. A dense skip tree split operation is similar to a B-tree

split operation. The difference between the two operations is that a B-tree splits

a single node into two nodes of identical length, whereas a skip tree splits a node

using the target key as a pivot. By selecting the target key as a pivot, properties

(D5) and (D6) are preserved. The add and remove operations employ a copy-on-

write modification strategy. The original nodes are replaced by their copies, and

the linked fields of the original nodes are set to false (not shown in Figure 3.4c).

The remove operation begins with a traversal through the data structure. If the

target key is not located, the operation terminates at the end of the traversal. If the

target key is located, then three types of nodes are locked. The target node con-

taining the key is locked, the parent of the target node is locked, and all nodes that
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will be involved in the join operation are locked. The nodes involved in the join

operation consist of the child to the left and the child to the right of the target node

and the rightmost and leftmost descendants of these two children, respectively. In

Figure 3.5b, the target node contains the key 40, the left child contains the key 10,

the right child contains the key 51, and the rightmost descendants of the left child

consist of the node containing the key 31. The join operation is the reverse of a

split operation. Modified nodes are replaced by their copies, and the linked fields

of the original nodes are set to false.

The optimistic concurrent algorithm design yields relatively straightforward

correctness proofs. The algorithm is deadlock-free because locks are always ac-

quired in a bottom-up fashion. Any overlapping non-contains operations consist

of a set of common nodes that participate in both locking phases. The operation

that acquires the lock on the common node with the minimum height will proceed

(or the leftmost shared node with minimum height in the case of overlapping dele-

tions). Once an operation acquires a lock on the common node with the minimum

height, the remaining nodes in that operation’s locking phase cannot be acquired

by the overlapping operations, as locks are always acquired in a bottom-up fash-

ion. The contains operation is wait-free as it does not acquire any locks and it

never retries. The linearization point of the add operation occurs when a copy of

the target node containing the inserted key is linked into the data structure. The

linearization point of the remove operation occurs when a copy of the target node

without the deleted key is linked into the data structure.

3.4 Synthetic Benchmarks

Performance analysis of the concurrent skip tree has been conducted using syn-

thetic benchmarks under six workloads. The workloads vary in proportions of
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contains, add, and remove operations and in the number of unique keys stored

by the data structure. Half of the workloads use 90% contains, 9% add, and 1%

remove operations, as read-intensive workloads are the most common steady-state

configuration for many applications [95]. Half of the workloads use 33% contains,

33% add, and 33% remove operations, to represent steady-state configurations that

are write-intensive. 5,000,000 operations are executed in each independent trial,

while the total throughput of the data structure as measured by the number of con-

currently executing threads varies from 1 to 2048. The number of unique keys is

determined through selection of random values from a uniform distribution with

a range of 500, or 200,000, or 232 integers. The three ranges represent scenarios of

(a) a very small number of keys, (b) a larger number of keys that still fit entirely

within cache, and (c) a quantity of keys that cannot entirely be contained within

the largest level of cache, respectively. Each independent trial is repeated 64 times.

Keys that are designated for a contains or remove operation are pre-loaded into

the data structure prior to the beginning of a trial.

Benchmarks were evaluated on a Sun Fire T1000 with eight cores at 1.0 GHz

and 32 hardware threads, and an Intel Xeon L5430 with four cores at 2.66 GHz and

8 hardware threads. Each core of the UltraSPARC T1 processor has a 8 kB level-1

data cache and a 16 kB instruction cache. The cores share a 3 MB level-2 unified

cache. Each core of the Xeon processor has a 32 kB level-1 data cache and a 32 kB

level-1 instruction cache. Each pair of cores shares a 6 MB level-2 unified cache.

The benchmarks were executed on the 32-bit server version of the HotSpot Java

Virtual Machine version 1.6.0 update 14.

Four data structures are compared in the performance analysis. They are the

dense skip tree, the Blink-tree, the optimistic skip list, and the lock-free skip list.

The optimistic skip list implementation is that written by Herlihy et al. [95] and

used in their benchmarks. It is an optimized implementation of the algorithm
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discussed in their paper. The lock-free skip list implementation is from the Java

SE 6 java.util.concurrent package developed by the JSR 166 concurrency utilities

group [96]. The dense skip tree is implemented using the optimistic locking strat-

egy described in the previous section. The Blink-tree implementation is an adapta-

tion of the algorithm by Sagiv [97] for in-memory data structure access. When the

Blink-tree algorithm is adapted to main memory access, a shared-reader/exclusive-

writer lock is placed on each node [98–100]. The deletion algorithm used is that

of Lehman and Yao [101], which allows for leaf nodes to ‘underflow’, meaning

that there is no lower bound on the size of leaf nodes. The Blink-tree implementa-

tion uses an atomic reference to store the root of the tree in order to reduce lock-

contention. This strategy cannot be replicated for non-root nodes, as the presence

of the link reference yields up to two references per non-root node (a link reference

cannot point to the root node).

The lock-free skip list implementation from the java.util.concurrent package is

among the fastest implementations of a linearizable sorted set abstract data type.

The Blink-tree has been found to perform the best among concurrent B-tree imple-

mentations over a wide range of resource conditions, B-tree structures, and work-

load parameters [100]. The optimistic skip list implementation is included in the

performance analysis as a comparison to the lock-free skip list, in order to show

the potential of a future lock-free dense skip tree implementation.

The results of the benchmarks on the Sun Fire T1000 and the Intel Xeon L5430

are shown in Figures 3.6 - 3.9. Tic marks denote the mean of the repeated ex-

periments and error bars denote standard deviation. Parameter variations for the

dense skip tree and the Blink-tree are shown in Figures 3.10 - 3.13. The parameter

Q of the dense skip tree determines the mean node size, and the parameter M of

the Blink-tree determines the minimum number of keys per node ignoring under-

flow caused by delete operations. In Figures 3.6 and 3.7, values of Q = 16 and
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M = 128 are selected as they show the best overall performance across all sce-

narios. In Figures 3.8 and 3.9, values of Q = 32 and M = 128 are selected. The

random height generator for the optimistic skip list implementation is identical to

distribution of random values used in the java.util.concurrent lock-free skip list

implementation, which returns 0 with probability 3/4, i with probability 2−(i+2) for

i ∈ [1, 30], and 31 with probability 2−32.

None of the four data structures outperforms the other three across all six work-

loads. Under the read-dominated scenario and a range of 232 keys, the skip tree

and Blink-tree reach 144% and 166% of the lock-free skip list throughput at peak

performance on the Sun Fire, and 155% and 177% of the lock-free skip list through-

put at peak performance on the Intel Xeon. Under the same read-intensive scenario

but a range of 500 keys, the skip tree reaches 73% of the lock-free skip list through-

put on the Sun Fire, while the Blink-tree reaches only 6% of the lock-free skip list

throughput. The Blink-tree performs the best relative to the other algorithms un-

der the write-dominated scenario and a range of 232 keys, yielding 168% of the

lock-free skip list throughput on the Sun Fire while the skip tree reaches 118%.

Both cache-conscious data structures perform poorly under the write-dominated

scenario and a range of 500 keys, with 7% relative throughput for the skip tree

and 2% for the Blink-tree. The poor performance of the Blink-tree is a consequence

of lock contention when the data structure consists of a small set of nodes. There

is no lock contention when the Blink-tree consists of one node, because the root

node is accessed through an atomic reference. When the Blink-tree consists of two

leaf nodes and a single root node, all concurrent threads must use one of the two

reader/writer locks on the leaf nodes. In the read-dominated scenario, the 10% of

write operations must wait for exclusive access to the reader/writer locks on the

leaf nodes.

Several trends emerge from the synthetic benchmarks. The optimistic concur-
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rent skip tree outperforms the lock-free skip list in read-dominated workloads

when the working set size exceeds the cache size. The skip tree peak through-

put is almost as high as the skip list peak throughput in read-dominated work-

loads for small working set sizes. The Blink-tree was designed for the disk/mem-

ory boundary where read and write operations operate at the granularity of disk

block sizes. In adapting the Blink-tree as an in-memory data structure, the reliance

on shared reader/writer locks incurs a penalty for the synthetic benchmarks with

small working set sizes. The optimistic skip list shows a degradation in perfor-

mance on the write-dominated workloads as compared to the lock-free skip list.

In the next chapter we will introduce a lock-free skip tree algorithm. This algo-

rithm will exhibit the same performance advantages as the optimistic skip tree

in read-dominated workloads, and will not have a reduced throughput in write-

dominated workloads.
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Figure 3.6: Read-dominated synthetic benchmarks on Sun Fire T1000
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Figure 3.7: Write-dominated synthetic benchmarks on Sun Fire T1000
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Figure 3.8: Read-dominated synthetic benchmarks on quad core Intel Xeon
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Figure 3.9: Write-dominated synthetic benchmarks on quad core Intel Xeon
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Figure 3.10: Parameter variations on the Sun Fire T1000 (read-dominated)
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Figure 3.11: Parameter variations on the Sun Fire T1000 (write-dominated)
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Figure 3.12: Parameter variations on the quad core Intel Xeon (read-dominated)
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Figure 3.13: Parameter variations on the quad core Intel Xeon (write-dominated)
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Chapter 4

Lock-Free Skip Tree

In this chapter we present a lock-free skip tree algorithm. The algorithm imple-

ments a lock-free randomized multiway search tree. In a series of synthetic bench-

marks, the lock-free skip tree implementation performs up to x2.3 better in the

time to completion of read-dominated workloads as compared to the state of the

art lock-free skip list implementation. Across all synthetic benchmarks, the mean

improvement of the skip tree is x1.4 compared to the skip list and the minimum

relative performance is x0.87. Our lock-free skip tree implementation is available

online [11].

Messeguer’s skip tree [25] contains properties that are disadvantageous for its

use as a cache-conscious data structure. Primarily, the most frequent node size in

the Messeguer skip tree is zero. These empty nodes are necessary to preserve the

length invariant of all paths from the root to the leaf nodes. In the previous chapter,

we defined a dense skip tree that eliminated both the path length invariant and the

existence of empty nodes. The optimistic skip tree was also defined in the previous

chapter as a concurrent implementation of the dense skip tree. It uses an optimistic

locking approach and yields performance improvements over the concurrent skip

list in read-dominated synthetic workloads.
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Several motivating factors encourage the design of a lock-free algorithm. Mu-

tual exclusion causes blocking of threads or processes that must wait until a lock is

released. Locks can cause deadlock, due to the early termination of a thread with-

out releasing a lock, or due to subtle defects in the concurrent algorithm design.

Undesirable effects such as priority inversion or convoying may occur [47]. Fi-

nally, lock contention limits scalability in highly-concurrent environments as lock-

management becomes a sequential bottleneck. The lock-free skip tree algorithm

has relaxed structural properties that allow atomic operations to modify the tree

without invalidating the consistency of the data structure. Our skip-tree definition

does not require that neighboring elements in the tree’s interior serve as partitions

on the tree. It maintains consistency by defining a reachability relation from the root

of the tree to any potential element stored in the tree for all possible states of the

tree (Section 4.3).

The following contributions are presented in this chapter:

• We describe a redesign of the skip tree in order to support lock-free opera-

tions. Our design has two primary differences from the Messeguer skip tree

definition. First, we introduce link references to allow nodes to split indepen-

dently of their parent nodes (Section 4.4). Second, we relax the requirement

that routing nodes behave as partitions on the tree (Section 4.5).

• We describe a practical lock-free algorithm for the concurrent skip tree. The

algorithm supports lock-free add and remove operations and wait-free contains

operations. The algorithm is shown to be linearizable (Section 4.6).

• We show that our lock-free implementation outperforms a highly-tuned skip

list, a relaxed balance AVL tree, and a Blink-tree across different thread counts,

operation mixes, and machine architectures when the working set size cannot

be contained in cache (Section 4.7).
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Figure 4.1: Lock-free skip tree example. Isomorphic to Figure 3.1.

4.1 Lock-free Skip Tree Definition

The lock-free skip tree implements a linearizable ordered set data structure over

some domain T. Three operations are supported: contains, add, and remove. The

lock-free skip tree consists of several linked lists stacked on top of each other. Each

linked list is referred to as a level of the tree. The linked lists are composed of

nodes. Each node contains some number of elements and a reference to the next

node in the list. The number of elements per node varies over time and is indepen-

dent of the number of elements in other nodes. In addition to storing elements and

a reference to the next node in the list, each node stores references to nodes that are

in the next lowest linked list level of the tree. A reference from one node to the next

node within the same linked list level is called a link reference. A reference from

one node to another node in a lower linked list level is called a child reference.

The lowest level of the tree consists of elements of height 0, and is defined to be

level 0 or the leaf level of the tree. Non-leaf nodes are referred to as routing nodes.

A routing node contains k child references to nodes that are one level below in the

tree. Leaf nodes do not store any child references. A leaf node or a routing node

with zero elements is referred to as an empty node. It is forbidden to insert new

elements into an empty node.

An element is assigned a random height, h, upon insertion into the tree. The
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(a) insertion into an empty tree (b) elements {1, 2, 3} are deleted then
{2, 3} are reinserted.

Figure 4.2: A sequence of add and remove operations.

random height is a non-negative integer. An element is considered to be a member

of the skip tree if-and-only-if the element is a member of a leaf node in the tree. If

the random height h is greater than zero, then a copy of the element is inserted at

each level from level 0 up to and inclusive of level h.

The root of the tree is defined to be the first node in the tree at the current

highest level. An empty skip tree consists of one leaf node containing the value

+∞. Figure 4.2 shows examples of lock-free skip trees. To the left of the first node

at each level is a number indicating the height of that level.

Any pair of adjacent elements share exactly one child reference. For example in

Figure 4.2 the child reference of elements 3 and +∞ at level 1 is the node containing

{6,+∞} at level 0. If A is the last element of a node and B is the first element of

the successor node at the same level, then the shared child reference of A and B is

the first reference of the node containing element B. The first element of each level

in the tree is assumed to be −∞, although this value is not explicitly stored in the

tree.

In order to explain the structural properties of a lock-free skip tree it will be

useful to define the tail set of a node n at level i. The tail set of n is the set that

contains n and all nodes subsequent to n at level i. The tail set of a node n is

written as tail(n).

Definition 4.1. A lock-free skip tree consists of a set of nodes. Each node contains a
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sorted list of elements, a reference to the next node in the linked list, and possibly a

list of child references. The elements stored within the nodes are members of some

domain set T. The lock-free skip tree obeys the following properties:

(D1) Each level contains the element +∞ at the last element of the last node. The

element +∞ appears exactly once for each level.

(D2) The leaf level may not contain duplicate elements.

(D3) For each level, given some v ∈ T there exists exactly one pair of adjacent

elements A and B such that A < v ≤ B.

(D4) Given levels i and i − 1 and some v ∈ T, there exist exactly two pairs of

adjacent elements {Ai, Bi} and {Ai−1, Bi−1} that satisfy property (D3). If

source is the child reference between elements Ai and Bi, and target is the

node that contains element Bi−1, then target ∈ tail(source).

(D5) For each node, given some v ∈ T such that v is greater than or equal to all

the elements of the node, then v will always be greater than or equal to all

elements of the node in all possible futures.

Theorem 4.1. Given a skip tree that obeys properties (D1) - (D5), each level of the

tree is a sequence of elements in non-decreasing order.

Proof: Assume there exists a pair of consecutive elements A and B occurring in the

sequence that is the first pair of elements occurring in decreasing order, i.e. B < A.

Let C and D be the first pair of consecutive elements in increasing order that is

subsequent to A and B. It is known that the pair C and D exists because property

(D1) states that each level terminates with +∞ and +∞ appears exactly once for

each level. Therefore each level terminates with a pair of adjacent elements in
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increasing order. As C and D are defined as the first pair of consecutive elements

in increasing order that are subsequent to A and B, then it follows that C ≤ B. The

two inequalities may be combined to show that C < A.

Select some v ∈ T such that C < v ≤ D and v < A. By combining the observa-

tion that −∞ < v < A and the assumption of the proof that A and B are the first

pair of consecutive elements in decreasing order, there must exist a pair of con-

secutive elements α and β in between elements −∞ and A, inclusively, such that

α < v ≤ β. However this violates property (D3) of the skip tree which requires

exactly one pair of adjacent elements C and D such that C < v ≤ D. Therefore the

sequence cannot contain a pair of consecutive elements in decreasing order. �

Corollary 4.1. The leaf level of the skip tree is a sequence of elements in increasing

order.

Property (D2) of Definition 4.1 states the leaf level does not contain duplicate

elements. Theorem 4.1 has shown that all levels contain a sequence of elements in

non-decreasing order. Combining these two statements yields the conclusion that

the leaf level is a sequence of elements in increasing order.

4.2 Class and Field Declarations

A node consists of a single atomic reference to a contents object. The contents object

stores an array of items, an array of children, and a reference to the next node in

the linked list. A node will not increase or decrease its height subsequent to node

creation. The array of items is always a non-null value. The array of children is

null if-and-only-if the enclosing node is a leaf node. A search object is used to keep

track of the position of some v ∈ T in relation to a specific node. The search object

contains a reference to some node, a reference to a contents object that represents a

snapshot of the node, and the index of element v relative to the items stored in the
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1 class Node <T> {
2 volatile Contents <T> contents ;
3 }
4 class Contents <T> {
5 final Object [] items;
6 final Node <T >[] children ;
7 final Node <T> link;
8 }
9 class Search <T> {

10 final Node <T> node;
11 final Contents <T> contents ;
12 final int index;
13 }
14 class HeadNode <T> {
15 final Node <T> node;
16 final int height ;
17 }
18 private volatile HeadNode <T> root;

Figure 4.3: Declarations for a tree with key type T

contents object. A head node stores a node reference and an integer representing

the height of the node. The skip tree declaration contains a single field, which is

an atomic reference to the root of the tree.

Figure 4.3 shows class and field declarations. All final fields contain immutable

state information. An immutable reference cannot be used to modify the object to

which it refers, including the transitive state of the object. The ’final’ type modi-

fier does not guarantee immutability [102]. In order to show linearizability (Section

4.6) it is assumed that the contents of a node are an immutable triplet of items, chil-

dren, and a link reference. Immutability is not enforced by the Java type system

so it is enforced by the implementation. The AtomicReferenceFieldUpdater inter-

face is used to enable atomic updates to the contents field of a node or to the root

field of a tree. For space reasons we have omitted the declaration of the singleton

class that represents the value +∞. The singleton class implements the compareTo

method such that the method will always return a value of 1. It is assumed that

the runtime system performs garbage collection. The garbage collector prevents

instances of the ABA problem [103] from occurring.
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4.3 Tree Traversal

Given some v ∈ T it is possible to determine if v is an element of the skip tree by

traversing through the tree starting at the root. The reachable relation is defined to

determine whether a node is connected to the root of the tree with some arbitrary

number of intermediate reachable nodes. The contains operation will determine

whether a leaf node containing v is reachable from the root node of the tree.

Definition 4.2. Let nodes ni and nj be at levels i and j, respectively, such that i ≥ j.

Define the relation reachable such that nj is reachable from ni if-and-only-if either

nj ∈ tail(ni) or nj is reachable from nk where nk is a child reference of some node

in tail(ni). Given an element v ∈ T and some node ni, then v is reachable from ni

if-and-only-if there exists a node lea f at level 0 that contains the element v and lea f

is reachable from ni.

Let h be the current height of the tallest level, and let Ah and Bh be the neigh-

boring elements at level h that satisfy property (D3), ie. A < v ≤ B. Let nh be

the node that contains element Bh. Node nh is reachable from the root, because all

nodes at level h are in the tail set of the first node of level h. Let Ah−1 and Bh−1 be

the neighboring elements at level h− 1 that satisfy property (D3) and let nh−1 be

the node that contains element Bh−1. Property (D4) requires that nh−1 ∈ tail(nh)

which is sufficient to show that nh−1 is reachable from nh. Combining the two

reachability arguments it can be shown that nh−1 is reachable from the root node.

For all i such that i ≤ h, by induction ni is reachable from the root node where ni is

the node at the ith level of the tree containing the neighboring element Bi. n0 is the

leaf node containing the neighboring element B0. Property (D2) states that the leaf

level does not contain duplicate elements. Property (D3) states that (A0, B0] is the

only interval at the leaf level that contains the value v. Therefore v is a member of

the set if-and-only-if v is reachable from the root of the tree.
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19 boolean contains (T v) {
20 Node <T> node = root.node;
21 Contents <T> contents = node. contents ;
22 int i = search (cts.items , v);
23 while( contents . children != null) {
24 if (-i - 1 == contents .items. length )
25 node = contents .link;
26 else if (i < 0)
27 node = contents . children [-i - 1];
28 else
29 node = contents . children [i];
30 contents = node. contents ;
31 i = search ( contents .items , v);
32 } // end traverse routing nodes
33 while(true) {
34 if (-i - 1 == contents .items. length )
35 node = contents .link;
36 else if (i < 0) return false;
37 else return true;
38 contents = node. contents ;
39 i = search ( contents .items , v);
40 } // end traverse leaf nodes
41 }

Figure 4.4: Determining whether v is in the set

The contains method implements the search algorithm described in the pre-

vious paragraph. Figure 4.4 shows the code for the method. Starting at the root,

the node ηi is located such that ηi satisfies property (D3) for level i of the tree. The

search method used on Lines 22 and 39 is a shorthand for calling the Arrays.binarySearch

method. The search method returns the index of the search key, if the key is con-

tained in the array. Otherwise the method returns −(insertion point)− 1, where

the insertion point is the index of the search key if the key were contained in the

array. The contains method travels through the routing nodes until it eventually

reaches a leaf node. When the method can no longer travel to a successor node in

the leaf level, then it terminates and returns a boolean value indicating whether v

is a member of the leaf level.
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4.4 Insertion

When an element is inserted into the dense skip tree it is assigned a random height.

The heights of the elements in a skip tree are distributed according to a geometric

distribution:

Pr(H=h) = qh p where p + q = 1

(p and q are constants)

An element is inserted into the skip tree through successive inserting and split-

ting of linked list levels of the tree. It is forbidden to insert new elements into an

empty node. The node with zero elements acts as the ‘marker’ of the Michael-

Harris algorithm [34, 35] that forbids concurrent updates and signals lazy elimina-

tion of the node.

To insert an element at height h, first the element must be inserted at level 0,

then the linked list must be split at level 0, then the element must be inserted at

level 1, then the linked list must be split at level 1, and this process continues until

the element is inserted at level h.

Figure 4.5 shows code for the add operation. The add operation consists of an

initial call to traverseAndTrack and continues with alternating calls to insertList

and splitList. The method traverseAndTrack is a specialized version of the tree

traversal operation described in the previous section. A path is traversed from the

root to the leaves of the tree, while references to the nodes that are to be updated get

stored in an array for later use. The moveForward method is called when retrying

an insertList or splitList operation. The moveForward method accepts a node

and an element, and returns a Search object containing the first node of the current

linked list level with an element x such that x ≥ v.

The insertList method accepts four arguments: an element to insert (v ∈ T), a
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42 boolean add(T v) {
43 int height = randomLevel ();
44 Search [] searchs = new Search [ height +1];
45 traverseAndTrack (v, height , searchs );
46 boolean success ;
47 success = insertList (v,srchs ,null ,0);
48 if(! success ) return false;
49 for(int i = 0; i < height ; i++) {
50 Node <T> right = splitList (v, searchs [i]);
51 insertList (v, searchs , right , i + 1);
52 }
53 return true;
54 }
55
56
57 void traverseAndTrack (T v,
58 int h, Search [] searchs ) {
59 HeadNode <T> root = this.root;
60 if (root. height < h)
61 root = increaseRootHeight (h);
62 int height = root. height ;
63 Node <T> node = root.node;
64 Search <T> result = null;
65 while(true) {
66 Contents <T> contents = node. contents ;
67 int i = search ( contents .items , v);
68 if (-i - 1 == contents .items. length ) {
69 node = contents .link;
70 } else {
71 result = new Search <T>(node , contents , i);
72 if ( height <= h)
73 searchs [ height ] = result ;
74 if ( height == 0)
75 return ;
76 if (i < 0) i = -i - 1;
77 node = contents . children [i];
78 height --;
79 }
80 }
81 }

Figure 4.5: Inserting v into the set
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hint at the correct node for insertion, a target height at which to insert, and a new

child reference to insert along with the new element. If the target height is non-

zero and the child node argument is null, then the previous splitList operation

was unsuccessful. If the previous splitList operation was unsuccessful or if ele-

ment v is located at the current level, then the method terminates. If the element v

is greater than the largest element in the node, then the method moves forward in

the linked list level. Otherwise it constructs a new contents object that contains the

new element and child reference. The compare-and-swap operation is attempted

using the node, the expected contents object, and the constructed contents object.

If the compare-and-swap is unsuccessful then the contents of the node are re-read

and the operation is retried. The non-Java operator ∪i used on Lines 95-96 repre-

sents the operation of insertion at position i. Given an array and an element v, the

operator ∪i returns a new array that contains all the elements of the original array

in the same order with the addition of the element v inserted at position i. When

both arguments to the ∪i operator are null, then the operator is defined to return

null as a matter of convenience.

The splitList method accepts two arguments: a partition element (v ∈ T) and

a hint at the correct node to split. The split operation will transform a single node

into two nodes: a left partition node and a right partition node. The left partition

node consists of all elements less than or equal to the partition element, and the

right partition node consists of all elements greater than the partition element. The

original node is transformed into the left partition node using a compare-and-swap

operation. The right partition node is the return value of the method.

Splitting a node preserves the reachability relations of the tree. Let node A be

split into the nodes A′ and B. The set of children references in node A is equal to the

union of the children references of A′ and B (Lines 119-120). The link reference of

A and link reference of B refer to the same node. If an element v ∈ T was reachable
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from node A, then the element is reachable from either one of the child references

of A or the link reference of A. The set of references is preserved across the split

operation, therefore the element is reachable from either one of the child references

of A′, or one of the child references of B, or the link reference of B. Similarly, if an

element v ∈ T was not reachable from node A, then the element is not reachable

from A′ nor B.

The insertList method is written on the premise that inserting into a leaf node

of the tree is nearly identical to inserting into a non-leaf node of the tree. In the

case of the leaf node, there are no child references to modify. In the case of a non-

leaf node, a new child reference is added to the node. The new child reference,

child, is an argument to the insertList method. It will become the child reference

to the right of the new element v ∈ T. The new child reference is created as a

result of a split operation, therefore when the node was created it was true that

∀x ∈ child, v > x. By property (D5) of the lock-free skip tree, it will always remain

true that the element v is greater than the elements of child. Let u and w be the

members of level i that are the immediate neighbors of the new element v. Prior to

the insertion at level i of the tree, there exists a node at level i− 1 that is the child

reference of elements u and w that satisfies property (D4) for values x such that

u < x ≤ w. A pre-condition of the insertList method at level i is the application

of the splitList method at level i− 1. The insertList method adds v to the level

i of the tree and assigns a left child reference and right child reference to the two

pairs of elements, (u, v) and (v, w), respectively. If the original child reference of

(u, w) contained elements that were greater than v, these elements were removed

from the child reference at the completion of the splitList method. The child

reference of (u, w) prior to the insertList method is assigned as the left child

reference of v upon the successful completion of the method. A post-condition of

the split operation is that the new node that has been created contains the lowest
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values that are strictly greater than v. The node created by the split operation

will become the right child reference of v upon the successful completion of the

insertList method.
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82 boolean insertList (T v, Search [] searchs ,
83 Node <T> child , int h) {
84 if (child == null && h > 0)
85 return false;
86 Search result = searchs [h];
87 while(true) {
88 Node <T> node = result .node;
89 Contents <T> contents = result . contents ;
90 int i = result .index;
91 if (i >= 0)
92 return false;
93 else if (i > -contents .items. length - 1) {
94 i = -i - 1;
95 Object [] items = contents .items ∪i v;
96 Node <T >[] children = contents . children ∪i+1 child;
97 Contents <T> update =
98 new Contents <T>( items , children , contents .link );
99 if (node. casContents (contents , update )) {

100 result = new Search <T>(node , update , i);
101 searchs [h] = result ;
102 return (true );
103 } else result = moveForward (node , x);
104 } else result = moveForward (node , x);
105 }
106 }
107
108 Node <T> splitList (T v, Search <T> result ) {
109 while(true) {
110 Node <T> node = result .node;
111 Contents <T> contents = result . contents ;
112 int i = result .index;
113 int len = contents .items. length ;
114 if (i < 0) return (null );
115 else if (len < 2 || i == (len - 1))
116 return (null );
117 Object [] lItems = contents .items [0:i];
118 Object [] rItems = contents .items[i+1: len -1];
119 Node <T >[] lChildren = contents . children [0:i];
120 Node <T >[] rChildren = contents . children [i+1: len -1];
121 Contents <T> rContents =
122 new Contents <T>( rItems , rChildren , contents .link)
123 Node <T> right = new Node <T>( rContents );
124 Contents <T> left =
125 new Contents <T>( lItems , lChildren , right );
126 if (node. casContents (contents , left ))
127 return (right );
128 else result = moveForward (node , x);
129 }
130 }

Figure 4.6: Inserting and splitting a single level
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4.5 Deletion and Node Compaction

Figure 4.7 shows the code for the remove operation. An element v ∈ T is removed

by searching for the presence of the element at the leaf level of the tree. If v is

found, then construct a new array of elements minus v and update the node with a

compare-and-swap. If the compare-and-swap is successful then return true. Oth-

erwise retry the operation. If v is not found, then the remove operation returns

false. The moveForward method is invoked when retrying a remove operation.

The moveForward method accepts a node and an element, and returns a Search ob-

ject containing the first node of the current linked list level with an element x such

that x ≥ v. The non-Java operator \ used on Line 137 represents the set differ-

ence operation. Given an array (that does not hold duplicates) and an element in

the array, the set difference operator returns a new array that does not contain the

element.

The remove operation can introduce empty nodes and suboptimal child refer-

ences. Empty nodes are relatively straightforward to eliminate. As stated in the

previous section, it is forbidden to insert new elements into an empty node. There-

fore a link or child reference to an empty node can be replaced by a reference to

the immediate successor of the empty node. The elimination of an empty node is

shown in Figure 4.9a.

Definition 4.3. Let m contain a child reference to some node n. Let n′ be the suc-

cessor node of n. The child reference is an optimal child reference if-and-only-if re-

placing it with a reference to n′ results in a violation of the skip tree properties. An

optimal node is a node that contains only optimal child references.

Figure 4.8 illustrates two skip trees with identical nodes and highlights the dif-

ferences between optimal and suboptimal child references. Optimal child refer-

ences are necessary to preserve the expected O(log n) cost for sequential contains,
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131 boolean remove (T v) {
132 Search search = traverseAndCleanup (v);
133 while(true) {
134 Node <T> node = search .node;
135 Contents <T> contents = search . contents ;
136 if ( search .index < 0) return (false );
137 Object [] items = contents .items \ v;
138 Contents <T> update =
139 new Contents <T>( items ,null , contents .link );
140 if (node. casContents (contents , update ))
141 return (true );
142 search = moveForward (node , v);
143 }
144 }
145
146 Search <T> traverseAndCleanup (T v) {
147 Node <T> node = root.node;
148 Contents <T> contents = node. contents ;
149 Object [] items = contents .items;
150 int i = search (items , v);
151 T max = null;
152 while( contents . children != null) {
153 if (-i - 1 == items. length ) {
154 if (items. length > 0)
155 max =(T) items[items.length -1];
156 node = cleanLink (node , contents );
157 } else {
158 if (i < 0) i = -i - 1;
159 cleanNode (node , contents , i, max );
160 node = contents . children [i];
161 max = null;
162 }
163 contents = node. contents ;
164 items = contents .items;
165 i = search (items , v);
166 } // end traverse routing nodes
167 while(true) {
168 if (i > -contents .items. length - 1)
169 return new Search <T>(node , contents , i);
170 node = cleanLink (node , contents );
171 contents = node. contents ;
172 i = search ( contents .items , v);
173 } // end traverse leaf nodes
174 }

Figure 4.7: Deleting v from the set
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(a) optimal references (b) suboptimal references

Figure 4.8: Optimal versus suboptimal child references.

add, and remove operations. Four transformations can be applied to the tree to

eliminate empty nodes and suboptimal child references. These transformations

are shown in Figure 4.9. Node compaction can be applied in a lazy manner and

is performed alongside the remove operation. An optimal node can alternatively

be defined as a node that does not benefit from any of the four node compaction

operations.

Given a pair of adjacent elements A and B and their shared child reference

to node n, the child reference is suboptimal if max(n) < A. A suboptimal child

reference can be repaired as shown in Figure 4.9b. The reachability relationship

is preserved during the transformation because of property (D5) of the skip tree

definition. If max(n) < A at some point in time, then max(n) < A in all possible

futures.

Any pair of adjacent elements in a linked list level share exactly one child ref-

erence. For example in Figure 4.2 the child reference of elements 3 and +∞ at level

1 is the node containing {6,+∞} at level 0. As shown in Figure 4.9c, the node

compaction operations can lead two adjacent child references to point to the same

node. Given adjacent elements A, B, and C such that the child reference between

A and B is equal to the child reference between B and C, then element B can be

dropped from the node. In Figure 4.9c, β is the shared child reference of elements

A, B, and C. If β is reachable by the intervals (A, B] and (B, C], then β must be

reachable by the interval (A, C]. It is unsafe to apply this transformation to a node



4.5. DELETION AND NODE COMPACTION 80

that contains a single element. Assume element B from the previous example is the

single element of some node nB, and that element A is contained in node nA and

element C in node nC. The intervals
(

A, B
]

and
(

B, C
]

satisfy property (D4). If the

leftmost child reference in nC is a suboptimal child reference, and nC is repaired

while concurrently node nB is removed, then the interval
(

A, C
]

may no longer

satisfy property (D4).

A copy and delete strategy is used to eliminate a node that contains a single

element. This process is illustrated in Figure 4.9d. The inclusion of duplicate el-

ements in routing nodes (Theorem 4.1) makes it possible to move the element to

the successor node. Consecutive elements with identical values form an interval of

the form (X, X] that will never contain any values that satisfy property (D3). The

purpose of introducing duplicate elements is to allow for suboptimal child refer-

ence elimination when the parent node of the suboptimal child contains a single

element. Although element migration can be applied to any node that contains

a single element, in practice it is applied only when child references α and β are

pointing to the same node. The purpose of element migration is to eliminate a sub-

optimal node that contains a single element. There is no compelling argument for

removing an optimal node that contains a single element.

The deletion of the singleton element from a routing node can interfere with

shared child elimination. Let us reuse the earlier example with elements A, B, and

C stored in nodes nA, nB, and nC. Thread 1 is performing node migration and has

copied element B to node nC. Thread 2 detects the duplicate copy of element B on

node nC and begins shared child elimination. Thread 1 finishes the node migra-

tion operation by removing the original copy of element B from node nB. A third

concurrent thread of execution attempts suboptimal child reference elimination on

node nC. The thread has read element B from node nB before the element was

deleted. As both copies of B have been eliminated, the correct max element that is
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(a) empty node (b) suboptimal child reference

(c) shared child (d) element migration

Figure 4.9: Four types of node compaction
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a predecessor of nC is less than B. B is too large to use as a max predecessor of node

nc and therefore the tree can reach an inconsistent state. This error is prevented by

forbidding shared child elimination on a node that contains two elements. To re-

move a shared child on the first pair of elements in a node, element migration is

applied to the rightmost element of the node.

There are three cases to consider regarding shared child elimination. The shared

child appears either on a node with one element, or appears as the first child on a

node with two or more elements, or appears on a node with two or more elements

but not as the first child. If a node has exactly one element, then shared child

elimination could be performed if the node and its immediate successor could be

together updated atomically. As the double compare-and-swap operation is not

supported in our runtime or by commonly available hardware [13], shared child

elimination on a singleton node is performed using element migration. If the node

has two or more elements and the shared child appears as the first child refer-

ence, it is possible that the child reference is a by-product of an ongoing element

migration operation. The shared child elimination procedure maintains the reach-

ability relationships of the skip tree based on the assumption that the immediate

predecessor element preserves property (D5). With the exception of shared child

elimination, all other node compaction operations do not remove the rightmost el-

ement from a node. As we have shown, deletion of the singleton element from a

routing node can interfere with shared child elimination. Therefore, the deletion

of the first child of a node is forbidden.

4.6 Correctness

Liveness: We will show that add and remove are lock-free operations, and contains

is a wait-free operation. Lock-free operations guarantee that at least one thread
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will complete in a finite number of steps. Wait-free operations guarantee that all

threads will complete in a finite number of steps.

The add and remove operations each perform a finite number of traversals through

the tree. The add operation performs up to two passes through the tree. A first pass

inserts an element at the appropriate levels and a second pass splits each level after

the insertion pass has completed. A remove operation consists of one pass through

the tree that performs node compaction and possibly deletes an element from the

leaf level.

In both add and remove operations a node is visited at most once per traversal

through the tree. Each visit of a node performs at most one successful compare-

and-swap operation. The failure of one compare-and-swap operation implies the

success of a compare-and-swap operation from another concurrently executing

operation. Therefore system-wide progress is guaranteed. The contains opera-

tion performs one pass through the tree. Each node of the tree is visited at most

once, and the contents of each node are read at most once per visit. The operation

performs no conditional atomic operations. Therefore per-thread progress is guar-

anteed.

Linearizability: To demonstrate the skip tree algorithm is linearizable [40] it is

sufficient to define a linearization point for each operation and then show that

operations produce equivalent results to a sequential execution in which the oper-

ations appear to occur instantly at the linearization point.

The contains, add, and remove operations are linearized with two possible ac-

tions. If the operation does not change the state of the abstract data type, then the

operation has been linearized by a volatile read on the contents of a node. If the

operation changes the state of the abstract data type, then the linearization point

occurs at the success of a compare-and-swap operation.
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The linearization point for contains(v) occurs on the last volatile read of the

contents of a node, on Line 21, 30, or 38. At any snapshot in time there is at most

one leaf node that contains v. The reachability relation from the root node to the

node containing v is preserved by add and remove operations to ensure that v is

reachable from the root of the node if-and-only-if there exists a leaf node that con-

tains v.

The linearization point for add(v) occurs during the call to the insertList

method at the leaf level (Line 47). The linearization point depends on whether

the add operation is successful. A successful add operation is linearized on the

compare-and-swap operation that inserts v into a leaf node. An unsuccessful add

operation is linearized on the read of the contents of a leaf node that leads to the

discovery of v as a element of the leaf node. A successful remove is linearized at

Line 140 on the compare-and-swap that removes v from a leaf node. An unsuc-

cessful remove(v) operation is linearized at Line 163 or 171 at the volatile read of

a leaf node that does not contain v and contains some element greater than v.

The four node compaction operations preserve the structural consistency of

the skip tree. Empty node elimination does not alter the ordering relationships

among elements in a linked list level. Nor does empty node elimination affect any

of the child references from one level to the next level below. Suboptimal child

reference elimination can occur on a child reference n at level i − 1 that is shared

by neighboring elements A and B at level i if-and-only-if for all values v such that

A ≤ v < B, the corresponding node n′ at level i − 1 that satisfies property (D3)

for value v is a successor node of n. Since n′ must be in the tail(n) by property

(D4) and n′ 6= n, then it is safe to move the child reference of A and B to the link

reference of node n. If n′ 6= n holds at some point in time for all values v, then

n′ 6= n holds in all possible futures by property (D5).

Shared child elimination preserves property (D4) using a similar argument that
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was applied to suboptimal child reference elimination. Shared child elimination

can occur on a child reference n at level i − 1 that is shared by neighboring pairs

(A, B) and (B, C) because property (D4) applies to the child reference n for neigh-

boring pairs (A, B) if-and-only-if property (D4) applies to the child reference n for

neighboring pairs (B, C). It is trickier to preserve property (D3) in the shared child

elimination transformation. Shared child elimination is the only node compaction

transformation that eliminates a non-duplicated element from a linked list level.

Therefore it must be shown that, given some value v, there exists exactly one pair

of adjacent elements α and β such that α < v ≤ β.

Let A, B, and C be three neighboring elements such that child reference n is

shared by neighboring pairs (A, B) and (B, C). If A and B are on the same node,

then these neighboring elements and child reference n satisfy properties (D3) and

(D4) if-and-only-if B and C and child reference n satisfy properties (D3) and (D4).

If A and B are not on the same node, then it is possible that A is identical to B, and

that A was copied using element migration but has not been deleted. As described

in the previous section, it is for this reason that shared child elimination cannot be

applied to the first child reference of a node.

Element migration is a process that occurs in two atomic operations. The first

operation introduces a copy of some element A and a child reference n into a linked

list level. The copy of the element does not interfere with property (D3) as the inter-

val (A, A] does not contain any values. And the copy of child reference n cannot

be traversed as the interval (A, A] is empty so therefore there are no values that

satisfy the predicate of property (D4). The second atomic operation removes the

original element A and child reference n from the singleton node. Let A be the

original element and A′ be the copy of element A. If A is concurrently participat-

ing in shared child elimination then A it will not be eliminated by the concurrent

operation as the rightmost element of a node is always preserved during shared
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child elimination. It is forbidden for A′ to participate in shared child elimination

because A′ is the first element in a node. Given this restriction, it is safe to elim-

inate A with the guarantee that A′ will remain to preserve the interval property

(D3).
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Figure 4.10: Read-dominated synthetic benchmarks on Sun Fire T1000
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Figure 4.11: Write-dominated synthetic benchmarks on Sun Fire T1000
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Figure 4.12: Read-dominated synthetic benchmarks on quad core Intel Xeon



4.6. CORRECTNESS 89

 0

 500

 1000

 1500

 2000

 2500

 1  4  16  64  256  1024  4096

T
h
ro

u
g
h
p
u
t 
(O

p
s
./
m

s
e
c
.)

Threads

33% Contains, 33% Add, 33% Remove
Max Size: 5,000,000

skip list
opt tree

B
link

-tree
skip tree

 0

 1000

 2000

 3000

 4000

 5000

 1  4  16  64  256  1024  4096

T
h
ro

u
g
h
p
u
t 
(O

p
s
./
m

s
e
c
.)

Threads

33% Contains, 33% Add, 33% Remove
Max Size: 200,000

skip list
opt tree

B
link

-tree
skip tree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1  4  16  64  256  1024  4096

T
h
ro

u
g
h
p
u
t 
(O

p
s
./
m

s
e
c
.)

Threads

33% Contains, 33% Add, 33% Remove
Max Size: 500

skip list
opt tree

B
link

-tree
skip tree

Figure 4.13: Write-dominated synthetic benchmarks on quad core Intel Xeon
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4.7 Synthetic Benchmarks

Performance analysis has been conducted with an experimental design that is pop-

ular in the concurrent data structures literature [35, 104, 95]. Synthetic workloads

are created that vary in proportions of contains, add, and remove operations and

in the number of unique elements stored by the data structure. Half of the work-

loads use a 90
100 : 9

100 : 1
100 ratio of operations. The other half use a 1

3 :1
3 :1

3 ratio of op-

erations. 5,000,000 operations are executed in each independent trial, while the

total throughput of the data structure as measured by the number of concurrently

executing threads varies from 1 to 2,048.

The maximum size of the tree is determined through selection of random ele-

ments from a uniform distribution with a range of 500, or 200,000, or 232 integers.

For each scenario, an upper bound on the size of the tree is the minimum of the

range of input integers (500, 200,000 or 232) and the number of operations per-

formed (5 million). Each independent trial is repeated 64 times. Integers that are

designated for a contains or remove operation are pre-loaded into the tree prior

to the beginning of a trial. The smallest working set size is selected to fit entirely

within the L2 cache and the largest working set size is set to greatly exceed the L2

cache size.

Benchmarks were evaluated on a Sun Fire T1000 and an Intel Xeon L5430. The

benchmarks were executed on the 32-bit server version of the HotSpot Java Virtual

Machine version 1.6.0 update 16. Explicit parameters for the virtual machine are

2 GB heap size and 128 kB thread stack size. The Sun Fire has 8 UltraSPARC T1

cores at 1.0 GHz and 32 hardware threads. The cores share a 3 MB level-2 unified

cache. The operating system version on the Sun Fire T1000 is Solaris 10. The Xeon

L5430 has 4 cores at 2.66 GHz and 8 hardware threads. Each pair of cores share a 6

MB level-2 unified cache. The operating system distribution is CentOS release 5.3

with Linux kernel 2.6.29-2.
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We compare four implementations of linearizable concurrent ordered sets:

• skip list - the ConcurrentSkipListSet in the java.util.concurrent library.

Written by members of the JCP JSR-166 Expert Group.

• skip tree - our lock-free skip tree algorithm.

• opt tree - the optimistic relaxed balance AVL tree algorithm of Bronson et al.

[104].

• Blink-tree - a concurrent B-tree algorithm developed by Lehman and Yao [101]

and refined by Sagiv [97].

Figures 4.10 - 4.13 show the results of the synthetic benchmarks on the Sun Fire

T1000 and the quad core Intel Xeon. Tic marks denote the mean of the repeated

experiments and error bars denote the standard deviation. In all graphs, a higher

value on the vertical axis denotes improved performance.

The skip tree structure is controlled by a single parameter, q, the failure rate of

the underlying geometric distribution. The Blink-tree is also controlled by a single

parameter, M, the minimum node size. Parameter variations for each of the six

scenarios were conducted. The parameter value with the best average performance

was selected (q= 1/32, M=128).

On the Sun Fire T100, using a maximum set size of 5,000,000 elements, the peak

throughput of the skip tree is 229% relative to the skip list on the read-dominated

scenario and 181% on the write-dominated scenario. The peak throughput of the

opt tree is 151% and 123% respectively relative to the skip list in the two scenarios,

and the relative peak throughput of the Blink-tree is 158% and 184% respectively.

The skip tree exhibits the greatest improvement to system throughput under read-

dominated scenarios with a large working set size. Averaged over all scenarios,

the skip tree peak throughput is 141% relative to the skip list and the opt tree rel-

ative throughput is 115%. Averaged over all scenarios excluding the maximum
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range of 500 elements, the relative peak throughput of the Blink-tree is 143%. Aver-

aged over all scenarios the relative peak throughput of the Blink-tree drops to 97%.

The Blink-tree performs wait-free searches when implemented for the memory-disk

boundary where a page can be accessed from disk atomically. When implemented

in main memory, the tree uses shared reader-writer locks [98, 100]. The reader-

writer lock strategy is a bottleneck when there are only a handful of nodes in the

data structure.

On the Xeon L5430, the peak throughput of the skip tree is 199% relative to

the skip list on the read-dominated scenario and 125% on the write-dominated

scenario, using a maximum set size of 5,000,000 elements. The peak throughput

of the opt tree is 234% and 235% relative to the skip list in the two scenarios, and

relative throughput of the the Blink-tree is 168% and 147%. The opt tree has the

greatest improvement relative to the other data structures on the Intel processor.

Averaged over all scenarios on the Xeon L5430, the peak throughput of the skip

tree is 130% relative to the skip list and the peak throughput of the opt tree is

167% relative to the skip list. The skip tree and the opt tree yield almost equal

performance on the Intel Xeon, and the skip tree outperforms the opt tree on the

Sun Fire T1000.

The distribution of node sizes at the conclusion of the 90% contains, 9% add,

and 1% remove synthetic workload with q = 1/8 is shown in Figure 4.14a. The

observed mean node size is 7.92 with a standard deviation of 7.41. The expected

mean node size is 1/q = 8 and the expected standard deviation is
√

p/q = 7.48. The

percentage of empty nodes is 0.11%, which can be attributed to the small fraction

of remove operation in this workload. The number of nodes and the number of el-

ements traversed per contains operation have been measured. 99.998% of all the

4.5 million contains operations in this workload encountered exactly 8 nodes dur-

ing their traversal of the skip tree. This observation closely matches the expected
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number of encountered nodes which is
⌈
log8 5, 000, 000

⌉
= 8. The distribution of

the number of elements encountered per contains operation is shown in Figure

4.14b. The number of elements encountered follows a normal distribution with a

mean value of 28.8.

To measure the effectiveness of the node compaction algorithm, the distribu-

tion of node sizes was measured after a 0% contains, 20% add, and 80% remove

synthetic workload with q = 1/8. Node compaction was enabled in a first experi-

ment and disabled in a second experiment. The node size distributions are shown

in Figures 4.15a and 4.15b. A x2.9 reduction in the number of empty nodes is ob-

served when node compaction is enabled.

The performance of sequential iteration through the set is examined while con-

current operations are performed. The 90% contains, 9% add, and 1% remove

workload is selected with a maximum set size of 5,000,000 elements. A single

thread continuously iterates over the elements of the set. Competing threads per-

form contains, add, and remove operations. The throughput of the iterator thread

is shown in Figure 4.16. To measure the performance of sequential iteration, the

opt tree is replaced by the snap tree, an extended algorithm that provides support

for fast cloning and snapshots. Our experiments confirmed the original findings

that the snap tree outperforms the opt tree for sequential iteration [104]. The skip

tree shows a 18% improvement over the skip list with zero thread contention and

a 97% improvement at the highest thread contention. The snap tree shows a 29%

decrease in performance over the skip list at zero thread contention and a 25%

improvement at the highest thread contention.

Comparing the synthetic benchmarks of this chapter and the previous chap-

ter, it can be concluded that the lock-free skip tree exhibits the same performance

advantages as the optimistic skip tree in read-dominated workloads, and does

not have a reduced throughput as compared to the optimistic skip tree in write-
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Figure 4.16: Iteration throughput of a single thread.

dominated workloads. On the Sun Fire T1000, the peak throughput of the lock-free

skip tree is 229% relative to the lock-free skip list on the read-dominated workloads

with 5,000,000 elements. The peak throughput of the optimistic skip tree is 144%

relative to the skip list on the same workload. On the write-dominated workload

with 512 elements, the lock-free skip tree exhibits the same throughput as the skip

list to within 1%, but the optimistic skip tree exhibits only 5% of the performance

of the skip list. The lowest peak throughput of the lock-free skip tree relative to

the skip list across all synthetic benchmarks is 87% on the read-dominated work-

load with 512 elements. The synthetic benchmarks have shown that a lock-free

cache-conscious data structure can perform up to x2.3 better in some workloads

compared to the state of the art with only a 13% maximum penalty across all work-

loads.

The synthetic benchmarks have shown that the design of cache-conscious con-

current data structures for many-core systems exhibits significant performance im-

provements over the state of the art in lock-free data structure designs. Bench-

marks that perform synthetic operations should be interpreted as measurements

of performance that lack semantic context or purpose. The benchmark results can

be interpreted across all application developers to estimate the utility of the algo-
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rithm for the specific needs of the developer. The disadvantage of the synthetic

operations is that they do not have any explicit meaning. As such, some caution

must be exercised when projecting the synthetic benchmarks onto a specific appli-

cation domain. In the next chapter, we study a class of NP-hard problems that can

be solved using a linearizable concurrent priority queue. We study four examples

from this class of problems, and compare the relative performance of the lock-free

skip tree and skip list when used as concurrent priority queues.
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Figure 4.17: Parameter variations on the Sun Fire T1000 (read-dominated)
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Figure 4.18: Parameter variations on the Sun Fire T1000 (write-dominated)
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Figure 4.19: Parameter variations on the quad core Intel Xeon (read-dominated)
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Figure 4.20: Parameter variations on the quad core Intel Xeon (write-dominated)
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Chapter 5

Application Benchmarks

In the previous chapter, we showed using a series of synthetic benchmarks that

the lock-free skip tree outperformed the lock-free skip list in large working set

sizes as measured by operations per second as the quantity of concurrent threads

is varied. The disadvantage of synthetic benchmarks is that they do not have any

explicit meaning. As such, some caution must be exercised when projecting the

synthetic benchmarks onto a specific application domain. In this chapter, we iden-

tify a class of problems that can be used to characterize the relative merits of the

lock-free skip tree as compared to the lock-free skip list. We selected four NP-

hard problems to solve using a parallel branch-and-bound technique: N puzzle,

graph coloring, asymmetric traveling salesman, and 0-1 knapsack. In a series of

four parallel branch-and-bound applications, two of the applications are x2.3 and

x3.1 faster when using the skip tree as a concurrent priority queue as compared

to the lock-free skip list. In a shared-memory supercomputer architecture the two

branch-and-bound applications are x1.6 and x2.1 faster with the skip tree versus

the skip list running at 80 hardware threads.

In this chapter we study the relative performance of a parallel branch-and-

bound solver on four NP-hard problems using a lock-free skip list and lock-free
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skip tree as concurrent priority queues. The four benchmarks are evaluated on a

Sun Fire T1000 and an Intel Xeon L5430. The Sun Fire has 8 UltraSPARC T1 cores

at 1.0 GHz and 32 hardware threads. The cores share a 3 MB level-2 unified cache.

The operating system version on the Sun Fire T1000 is Solaris 10. The Xeon L5430

has 4 cores at 2.66 GHz and 8 hardware threads. Each pair of cores shares a 6 MB

level-2 unified cache. The operating system distribution is CentOS release 5.3 with

Linux kernel 2.6.29-2. The Sun Fire T1000 benchmarks are run using the 64-bit

build of the HotSpot Java virtual machine version 1.6.0_18 with command-line ar-

guments “-Xmx7G -XX:+UseParallelGC -XX:+UseParallelOldGC”. The Intel Xeon

benchmarks are run using the 64-bit build of the HotSpot Java virtual machine

version 1.6.0_20 with command-line arguments “-Xmx43G -XX:+UseParallelGC -

XX:+UseParallelOldGC -XX:ParallelGCThreads=8.”

To evaluate the relative performance of the lock-free skip tree as a concurrent

priority queue, we have created a synthetic branch-and-bound application. The

synthetic application is a simplification of a real branch-and-bound application. It

has been designed to test three hypotheses of the branch-and-bound applications:

(1) the distribution of lower bounds of the candidates in the search space affects the

performance of the skip tree; (2) the computation time of the lower bound affects

the performance of the skip tree; and (3) the branching factor of the application

affects the performance of the skip tree. Based on the four application benchmarks

and the synthetic benchmark, we provide a set of guidelines for selecting the lock-

free skip tree to use as a centralized priority queue in a parallel branch-and-bound

application versus the lock-free skip list. Finally, at the conclusion of this chapter

we present results from analyzing the parallel branch-and-bound benchmarks on

two shared-memory supercomputer architectures.
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5.1 Candidate Application Benchmarks

In selecting the class of problems for this chapter, we were looking for a set of con-

current algorithms that relies heavily on a linearizable data structure that preserves

the sorted set or sorted map abstraction. Our first choice was the Apache Hadoop

implementation of Google’s MapReduce framework. MapReduce is a program-

ming model for processing and generating large datasets. Users specify the com-

putation in terms of a map and a reduce function, and the underlying runtime sys-

tem automatically parallelizes the computation across large-scale clusters of ma-

chines, handles machine failures, and schedules inter-machine communication to

make efficient use of the network and disks [105]. The MapReduce specification

guarantees that within each of the reduce partitions, the intermediate key/value

pairs are processed in sorted order. One possible implementation of this guarantee

is to use a ConcurrentSkipListMap to collect key/value pairs as they are generated

in the map phase. But we discovered that the Apache Hadoop implementation

does not use a ConcurrentSkipListMap or ConcurrentSkipListSet.

Our second choice was the Apache Cassandra distributed database project [106].

Apache Cassandra uses a multidimensional key/value data model. A column rep-

resents a single key/value pair. Columns are grouped together into sets called

column families. A set of column families can be grouped together into a su-

per column family. Applications can specify the sort order of columns within

a column family or a super column family. Column families and super column

families are implemented using ConcurrentSkipListMaps. We replaced the Con-

currentSkipListMap instances in Cassandra 0.6.0 with ConcurrentSkipTreeMap in-

stances. The performance of the two data structures was compared using the

stress.py tool in the Cassandra source distribution. stress.py is intended for bench-

marking and load testing a Cassandra cluster. At first we found no difference

in performance using the skip list or the skip tree. Some investigation revealed
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that column families are kept at relatively small sizes in memory before they are

stored persistently on disk. After modifying the max column family size param-

eter setting, again no performance difference was exhibited between the skip list

and the skip tree. A runtime profile of the Cassandra server during the execution

of stress.py shows that the most time-consuming work phases are disk I/O on the

server and network I/O between the client and server.

Our experiences with Apache Hadoop and Apache Cassandra led us to revise

the prerequisites for the application benchmarks to focus on a class of problems

that are solved with a single algorithmic technique that does not rely on tuning

configuration parameters to maximize I/O bandwidth and minimize I/O latency.

We settled on NP-hard problems that can be solved using a parallel branch and

bound algorithm. Parallel branch and bound algorithms can be implemented

using a concurrent priority queue. In the literature, a significant portion of pa-

pers that improve concurrent priority queue designs are published in the context

of parallel branch-and-bound applications [107–112]. We selected four NP-hard

problems to solve using a parallel branch-and-bound technique: N puzzle, graph

coloring, asymmetric traveling salesman, and 0-1 knapsack.

For each of the NP-hard problems, we selected an algorithm for estimating

the lower bound of each candidate solution that had been published as the best

solution at some point in time, and is used in the current literature as a reference

strategy against which novel approaches are measured. Many improvements to

the lower bound estimate are made by improving the set of heuristics which can

be applied to the candidate solution [29]. A sophisticated heuristic can reduce

search space for a branch-and-bound application. For our purposes, the advanced

heuristics modify the space of initial configurations with working set sizes that

can fit in the memory available on the machine. In acknowledging the shift in

configurations that have large working set sizes, the critical observation is that
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a non-empty set of configurations exists that can benefit from a cache-conscious

priority queue, regardless of the technique used to estimate the lower bounds.

One future application of lock-free skip trees is that in some parallel applica-

tions, a set of subtasks may be able to collect local ordered sets/maps, and then

merge them in during a reduction step. It may be worthwhile to bulk-merge sub-

trees using skip tree versus just have all operations directly add to single result set.

The indices of non-leaf nodes in the skip tree may be used as partitions to divide

the merge operation into subsets. For example, imagine merging two subtrees of

the same height. One subtree has a root node with elements {10, 30, 50} and the

other subtree has a root node with elements {20, 40, 60}. Each interval of the left

(or right) subtree overlaps with two intervals from the right (or left) subtree, with

the exception of intervals containing ±∞.

5.2 Parallel Branch-and-Bound Algorithms

Branch and bound is an algorithmic technique for finding optimal solutions of

optimization problems. Given a finite set of candidate solutions X and an ob-

jective function f (X) → R, an optimal solution x? ∈ X exists such that f (x?) =

min { f (x)|x ∈ X}. The goal of the branch and bound technique is to systematically

traverse the space of candidate solutions in order to find an optimal solution. It is

assumed that a splitting procedure exists that accepts an input set of candidates

S and returns two or more smaller sets S1, S2, . . . , Sn whose union covers S. Each

child of the input set is typically distinguished by the imposition of one or more

constraints upon S to select the subset of candidates Si. A second assumption is

that there exists a method for estimating the lower and upper bounds of the objec-

tive function values in a set of candidate solutions. The branch and bound method

was first proposed by Land and Doig [113] for solving integer linear programming
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problems at British Petroleum [114].

The bounding procedure takes advantage of the fact that if the lower bound for

some set A of candidate solutions is greater than the upper bound of another set B,

then A may be discarded from the search space. In practice, the bounding proce-

dure is implemented with global state that keeps track of the current best solution

that has been identified so far. The branch and bound algorithms studied in this

section perform a best-first search. Candidate solutions are searched in increasing

order of their lower bound. Best-first selection is optimal with respect to the num-

ber of decomposed subproblems, with no ties occurring among lower bounds, and

the branching and bounding operations do not depend on previous history [115].

We have selected the best-first search strategy to analyze the performance of the

lock-free skip tree versus the lock-free skip list when used as a concurrent prior-

ity queue. The disadvantage of a best-first search is the memory requirement for

storing all unexplored candidates in the search tree until an optimal solution is dis-

covered. If an optimal solution can be discovered before running out of memory,

then it is found relatively quickly as compared to a depth-first search.

Gendron and Crainic [107] identify three main approaches to designing parallel

branch and bound algorithms. The first approach uses a sequential search strategy,

but improves the performance of calculating the lower bound estimate with a con-

current implementation of this calculation. The second approach builds a single

centralized search tree with multiple worker threads concurrently extracting can-

didate solutions from the tree and inserting children solutions into the tree. The

third approach builds several search trees in parallel with some method of coordi-

nation among the search trees to balance the workload across all trees. The second

approach has been the most popular approach to designing a parallel branch and

bound application [108–112].

The java.util.concurrent ConcurrentSkipListSet is a lock-free implementation
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of a quiescent priority queue backed by a skip list data structure [53]. With the

addition of an operation to extract the minimum element, the lock-free skip tree

implementation of the previous chapter implements a quiescent priority queue.

Recall that quiescent consistency is defined such that the operations of any pro-

cessors separated by a period of quiescence should appear to take effect in their

real-time order. A linearizable priority queue would prohibit the following situa-

tion from occurring: Thread 1 inserts element x into the priority queue and then

inserts element y into the priority queue, such that y < x. Concurrent with both

insert operations, Thread 2 is performing an extract minimum operation. Thread

2 returns the value x. In order to enforce linearizability, one strategy is to redefine

the extract minimum operation to select from elements that have completed inser-

tion before the beginning of the extract min operation. This strategy can be imple-

mented with timestamps per each node that note the logical time of insertion into

the queue [116]. The quiescent priority queue is sufficient for branch-and-bound

applications, where the only necessary requirement is that when y < x, then y is

extracted from the queue before x, given a period of quiescence has expired. An

alternative strategy to implementing a concurrent priority queue is to begin with a

lock-free skip tree and restrict remove operations to the head of the data structure.

It is possible that node compaction could be simplified under this strategy, as the

preponderance of node compaction operations would be happening at the head of

the queue.

5.3 N puzzle

The N puzzle is a game played on an m×m grid containing n square tiles, where

n = m2 − 1. Each tile is assigned a unique number from 1 . . . n. One tile in the

grid is always empty, called the ’blank’ tile, and depending on its position, the
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blank has two, three, or four adjacent tiles. A move in the game swaps the po-

sitions of the blank tile and a single neighboring tile. The tiles are initially set to

some random configuration. The goal is to rearrange the tiles into a specific goal

configuration. Typically the goal configuration consists of the tiles in row-wise

consecutive order, with the blank tile designated to appear either first or last in

the sequence. Korf [117] provides more information concerning the history of the

N puzzle problem. An excellent survey of NP-complete single-player games has

been written by Kendall et al. [118].

Half of the starting configurations of the N puzzle cannot reach the goal state

[119]. A parity argument can be made using the parity of permutations plus the

parity of the Manhattan distance moved by the blank tile. The Eight Puzzle con-

tains
9!
2

or 181, 440 possible configurations. The solutions for all legal starting con-

figurations of the Eight Puzzle have been solved using brute force [120]. The aver-

age length of a shortest path between two states is about 22 moves, and the maxi-

mum distance between any pair of states is 31 moves. The Fifteen Puzzle contains
16!
2

or over 1013 possible states. The Fifteen Puzzle is used as the NP-complete

example in the publication that introduced the Iterative-Deepening A* (IDA*) al-

gorithm [121]. One hundred randomly generated Fifteen Puzzle instances are used

in the IDA* paper and their solutions are included in the publication. The average

optimal solution length of these one hundred instances is about fifty-three moves.

The Iterative-Deepening A* algorithm performs a depth-first search. We show that

a parallel branch-and-bound solver can solve all one hundred instances presented

in the IDA* paper using a breadth-first search.

The lower bound calculation used as a baseline for the parallel branch-and-

bound solver is the sum of the Manhattan distances of each tile’s current position

relative to the tile’s goal position. Two admissible heuristics are used to improve

the lower bound: the linear-conflict heuristic and the last moves heuristic. Each
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heuristic can improve upon the lower bound when a specific set of conditions

mandates additional state transitions beyond those accounted for in the Manhat-

tan distance lower bound. Additional care must be taken to ensure that multiple

admissible heuristics do not interact unfavorably to produce a lower bound esti-

mate that is not admissible (ie. never overestimates the lower bound). The best

upper bound on the N puzzle problem is independent of the initial board state.

The upper bound serves no useful purpose to limit the possible search space. As-

suming that N is a fixed value for the N puzzle problem, calculation of the lower

bound is O(1).

The linear-conflict heuristic can increase the lower bound estimation when two

tiles are in their goal row or column, but are reversed relative to their goal positions

[122]. For example, if the top row of the puzzle contains the tiles (2, 1) in that

order, then one of the tiles must move down into the next row, in order to allow

the other tile to move into the correct position. The last moves heuristic exploits

the necessity of the blank tile to be the last tile that reaches the goal position, which

is the upper-left corner in this case. The last move must either move the 1 tile to

the right, or the 4 tile down. If the 1 tile is not in the left-most column, and the 4 tile

is not in the top row, then two moves can be added to the Manhattan distance and

still preserve admissibility [123]. If either the 1 tile or the 4 tile is in a linear-conflict

state, then the last moves heuristic cannot be applied.

Figure 5.1a shows the relative speedup of the parallel branch-and-bound solver

applied to one hundred instances of the Fifteen Puzzle executed on a Sun Fire

T1000. The basis for comparison in these graphs is the runtime performance of the

solver when the java.util.concurrent lock-free skip list is used as a priority queue.

The vertical axis represents the relative speedup of the solver when the lock-free

skip tree algorithm is used. The horizontal axis represents the average number

of partial solutions generated in the search space until the goal state was reached.



5.3. N PUZZLE 110

Avg. number of candidates

S
pe

ed
up

104 105 106 107 1080.
0

1.
0

2.
0

3.
0

A

B

(a) relative speedup of lock-free skip tree. Vertical axis is
Λ
T

.

Avg. number of candidates

P
er

fo
rm

an
ce

 d
el

ta
 (

se
cs

)

(+) performance
(−) performance

104 105 106 107 10810
−3

0.
01

0.
1

1
10

10
0

10
3

(b) absolute speedup of lock-free skip tree. Vertical axis is |Λ− T|.

Figure 5.1: N Puzzle instances on Sun Fire T1000. Λ is skip list execution time and
T is skip tree execution time.
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Figure 5.2: Worst-case and best-case N Puzzle instances on Sun Fire T1000.
Speedup is the ratio of skip list to skip tree execution times.

Worker threads in the parallel branch-and-bound algorithm will not process partial

solutions in the same order across repeated trials, and so therefore the average of

the number of partial solutions is reported.

Instances of the Fifteen Puzzle with a relatively small working set appear on

the left side of the graphs, and instances with a relatively large working set appear

on the right side of the graphs. Figure 5.1a shows the relative speedup of the skip

tree versus the skip list. For initial board configurations with a relatively small

working set size, the skip list outperforms the skip tree. For initial board config-

urations with the largest working set sizes that could be contained in memory on

this machine, the skip tree outperforms the skip list by as much as x2.3. Figure

5.1b shows the absolute difference in the runtime of the skip tree and the skip list.

The vertical axis denotes the log of the execution time with the skip list subtracted

from the execution time with the skip tree. Skip tree performance improvements

are plotted with the ‘+′ symbol and skip tree performance declines are plotted

with the ‘•′ symbol. The absolute performance graphs illustrate the trend that an

initial board configuration with a small working set size will execute in less time

than an initial board configuration with a large working set size. As a corollary,
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Figure 5.3: Worst-case and best-case N Puzzle instances on quad core Intel Xeon.
Speedup is the ratio of skip list to skip tree execution times.

any relative performance deficiencies of the skip tree at small working set sizes

correspond to a small performance penalty in absolute units.

The initial board configurations with the largest performance penalty and largest

performance improvement of the skip tree have been assigned the labels ‘A’ and

‘B’ in Figure 5.1a. The speedup of configurations ‘A’ and ‘B’ relative to the number

of available processors is shown in Figures 5.2a and 5.2b. Initial board ‘A’ is solved

in 53 moves with an average of 5.8× 104 partial solutions generated in the search

space. Initial board ‘B’ is solved in 55 moves with an average of 2.8× 107 partial

solutions generated in the search space. There is no speedup of the skip tree rel-

ative to the skip list in board configuration ‘A’ when running on a single core (4

threads). As the thread count increases, the application speedup is smaller using

the skip tree as compared to using the skip list. Initial board ‘B’ on a single core

is solved using the skip tree with a speedup of x1.7 as compared to the skip list.

Running on all eight cores, the speedup of the skip list relative to a single core is

x2.7 and the speedup of the skip tree relative to the skip list on a single core is x5.7.

Performance results of the Fifteen Puzzle solver on a quad core Intel Xeon are

shown in Figure 5.4. There are more initial board configurations in these results as
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(b) absolute speedup of lock-free skip tree. Vertical axis is |Λ− T|.

Figure 5.4: N Puzzle instances on quad core Intel Xeon. Λ is skip list execution
time and T is skip tree execution time.
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compared to the Sun Fire T1000, as this Intel Xeon had more memory available, im-

plying that configurations with a larger working set size could be solved. The rela-

tive speedup of the skip tree to the skip list follows a similar trend on the Intel Xeon

benchmarks as seen earlier on the Sun Fire benchmarks. The initial board config-

urations with the largest performance penalty and largest performance improve-

ment of the skip tree have been assigned the labels ‘E’ and ‘F’. There is no speedup

of the skip tree relative to the skip list in board configuration ‘E’ when running on

a single thread. Initial board ‘F’ on a single core is solved using the skip tree with

a speedup of x1.7 as compared to the skip list. Running with eight threads, the

speedup of the skip list relative to a single thread is x7.3 and the speedup of the

skip tree relative to the skip list on a single thread is x17.8.

5.4 Graph coloring

A graph G is an ordered pair G = (V, E), where V is a finite set of vertices, and

E is a finite set of unordered pairs of vertices representing edges. A legal vertex-

coloring of graph G = (V, E) is a function c : V → N, in which any two incident

vertices u, v ∈ V are assigned different colors, meaning {u, v} ∈ E =⇒ c(u) 6=

c(v). The function c is called the coloring function. A graph G for which there

exists a vertex-coloring which requires k colors is called k-colorable. The smallest

number k for which there exists a k-coloring of graph G is called the chromatic

number of graph G and is denoted by χ(G) [124]. The initial board configura-

tions with the largest improvement of the lock-free skip tree as compared to the

lock-free skip list exhibits a x1.5 runtime improvement on the Sun Fire and a x3.1

improvement on the Intel Xeon.

The saturation largest-first (SLF) algorithm, also known as DSATUR algorithm,

solves the graph coloring problem by iteratively selecting the uncolored vertex v
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(b) absolute speedup of lock-free skip tree. Vertical axis is |Λ− T|.

Figure 5.5: Graph coloring instances on Sun Fire T1000. Λ is skip list execution
time and T is skip tree execution time.
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Figure 5.6: Worst-case and best-case graph coloring instances on Sun Fire T1000.
Speedup is the ratio of skip list to skip tree execution times.

with the highest saturation degree in G and then branching on the legal colorings

of vertex v [125]. The saturation degree of a vertex v in a partially colored graph G

is defined as the number of distinctly colored vertices adjacent to v. The DSATUR

algorithm has been considered a “de facto standard among exact graph coloring

algorithms” [126]. An initial upper bound is estimated using a greedy iterative

variation of the SLF algorithm, whereby the smallest possible color is assigned

to uncolored vertex v with the highest saturation degree at each iteration. In our

implementation, each vertex v builds a temporary bit vector that marks the distinct

colors adjacent to v. The cost of building the bit vector entries requires traversing

over all the edges of the uncolored vertices, which is O(E). Selecting the uncolored

vertex v with the highest saturation degree in G entails finding the max value of

the bit vector entries which is O(V). Combining these steps yields a worst-case

running time of computing of the lower bound to be O(E) + O(V).

The runtime performance of the graph coloring solver is tested with a set of

randomly generated graphs. Gn,p is a random graph with vertices {1, . . . , n} such

that the probability of an edge between any two vertices is 0 < p < 1, and the edge

probability is independent of all other edges. These random graphs are commonly
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Figure 5.7: Graph coloring instances on quad core Intel Xeon. Λ is skip list execu-
tion time and T is skip tree execution time.
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Figure 5.8: Worst-case and best-case graph coloring instances on quad core Intel
Xeon. Speedup is the ratio of skip list to skip tree execution times.

used as benchmarks in graph coloring publications [127–129]. In our experiments,

n was selected from the set {10 · i : i ∈ Z, 5 ≤ i ≤ 15} and p was selected from

the set {0.1, 0.3, 0.5, 0.7, 0.9}. Ten random graphs were generated for each possible

combination of values for n and p, yielding 550 test cases. Performance results

of the graph coloring solver on a Sun Fire T1000 are shown in Figure 5.5. Graph

instances with the largest performance penalty and largest performance improve-

ment of the skip tree have been assigned the labels ‘C’ and ‘D’ in Figure 5.5a. Graph

instance ‘C’ was generated using n = 70 and p = 0.3. It has a chromatic number of

7 with average of 1.1× 105 partial solutions generated in the search space. Graph

instance ‘D’ was generated using n = 90 and p = 0.3. It has a chromatic number

of 9 with an average of 3.2× 107 partial solutions generated in the search space.

There is no speedup of the skip tree relative to the skip list in graph instance ‘C’

when running on a single core (4 threads). As the thread count increases, the ap-

plication speedup is smaller using the skip tree as compared to using the skip list.

Graph instance ‘D’ on a single core is solved using the skip tree with a speedup of

x1.6 as compared to the skip list. Running on all eight cores, the speedup of the

skip list relative to a single core is x4.0 and the speedup of the skip tree relative to
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the skip list on a single core is x5.8.

Performance results of the graph coloring solver on a quad core Intel Xeon

are shown in Figure 5.7. There are more graph instances in these results as com-

pared to the Sun Fire T1000, as this Intel Xeon had more memory available, allow-

ing more configurations with a larger working set size to be solved. The relative

speedup of the skip tree to the skip list follows a similar trend on the Intel Xeon

benchmarks as seen earlier on the Sun Fire benchmarks. The initial board config-

urations with the largest performance penalty and largest performance improve-

ment of the skip tree have been assigned the labels ‘G’ and ‘H’. There is no speedup

of the skip tree relative to the skip list in board configuration ‘G’ when running on

a single thread. Initial board ‘H’ on a single core is solved using the skip tree with

a speedup of x3.0 as compared to the skip list. Running with eight threads, the

speedup of the skip list relative to a single thread is x6.6 and the speedup of the

skip tree relative to the skip list on a single thread is x20.3.

5.5 Asymmetric Traveling Salesman Problem

The asymmetric Traveling Salesman Problem (ATSP) begins with a directed graph

G of vertices V and edges E. Each edge is assigned a weight, wij, such that the

weight from vi to vj is not necessarily equal to the weight from vj to vi. The ob-

jective of ATSP is to find a shortest Hamiltonian path, defined as a path that visits

each vertex exactly once and has the smallest sum of all traversed edge weights

[130, 131]. Let the cost of the shortest Hamiltonian path for graph G be designated

as ATSP(G). In all instances, there was no runtime improvement of the solver

when using the skip tree versus the skip list.

When a new branch-and-bound algorithm for solving ATSP is published, the

Held-Karp lower bound is the most common lower bound that is used as a basis
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of comparison [132]. The Held-Karp lower bound on optimal tour length is con-

structed from a relaxation of the constraints imposed by ATSP [133, 26]. The ATSP

imposes a constraint on the optimal tour such that each vertex must have an inde-

gree of one, and the constraint that each vertex must have an outdegree of one. If

the outdegree constraint is eliminated and some arbitrary node is designated as a

root node, then an optimal minimum spanning tree (MST) can be generated. The

optimum minimum spanning tree for graph G is designated as MST(G). The di-

rected MST problem can be solved by the Chu-Liu/Edmonds algorithm [134–136]

which is a polynomial time algorithm. The directed MST is generated by a relax-

ation of the constraints for ATSP. Therefore the cost of the directed MST is less than

or equal to the cost of the optimal Hamiltonian path:

MST(G) ≤ ATSP(G) (5.1)

If each vertex in the directed minimum spanning tree has an outdegree of one,

then the shortest Hamiltonian path has been discovered. Otherwise, an iterative

procedure is used to transform the weights of the graph in order to encourage

the directed MST to become a Hamiltonian path. Let π(v) be any function that

maps a vertex v to some real number. Let the transformed weights be defined as

wπ
ij = wij − π(i). In the Hamiltonian path each vertex must have an outdegree of

1. This implies that the Hamiltonian path is affected by the weight transformation

exactly once per vertex:

ATSP(Gπ) = ATSP(G)−∑ (π(v) : v ∈ V) (5.2)

Combining equations 5.1 and 5.2 yields the observation that the transformed

directed MST is always a lower bound on the optimal Hamiltonian path:
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maxπ

(
MST(Gπ) + ∑ (π(v) : v ∈ V)

)
≤ ATSP(G) (5.3)

In order to derive a good lower bound on the optimal Hamiltonian path, π(v)

is assigned some negative value when the outdegree of v is greater than one and

a positive value when the outdegree is less than one. If deg+(v) is the outdegree

of v, then π(v) = k (1− deg+(v)) where k is an arbitrary constant. In practice, the

Held-Karp process is not run long enough to converge on the optimal Hamiltonian

path. However, after only a few iterations of the Held-Karp process, a sufficiently

accurate lower bound estimate can be calculated.

The TSPLIB library was used for input graphs to test the performance of the

ATSP solver. TSPLIB is a collection of graphs along with their solutions for the

Traveling Salesman Problem and related problems [137]. The collection of graphs

for the asymmetric traveling salesman problem come from a variety of real-world

scheduling and resource management applications [132]. The instances of the

TSPLIB that could be tested by our branch-and-bound solver contained between

17 and 171 cities. In all instances, there was no runtime improvement of the solver

when using the skip tree versus the skip list. In Section 5.7 we will show that the

ATSP solver is a compute-bound problem, which is to say that over 99% of the

total runtime is spent computing the lower bounds of the partial solutions.

5.6 0-1 Knapsack

The 0-1 knapsack problem [138], hereafter referred to as the knapsack problem,

is defined using a set of n items, such that each item j is assigned a profit pj and

a weight wj. The knapsack has a capacity c. A set of binary decision variables

{x1, . . . , xn} are defined such that item j is placed into the knapsack if xj = 1, and

item j is not placed in the knapsack if xj = 0. The objective of the knapsack prob-
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lem is to maximize
n

∑
j=1

pjxj subject to the constraint
n

∑
j=1

wjxj ≤ c. Let the efficiency

of item j be defined as the ratio of profit to weight. Assume the items are sorted

by their efficiency in decreasing order such that
p1

w1
≥ p2

w2
≥ . . . ≥ pn

wn
. A greedy

solution to the knapsack problem is to select the largest consecutive sequence of

most-efficient items that will fit in the knapsack. The first item s that cannot fit into

the knapsack is referred to as the split item. The solution vector x̂ with x̂j = 1 for

j = 1, . . . , s− 1 and x̂j = 0 for j = s, . . . , n is known as the split solution.

A branch-and-bound algorithm commonly used as a basis for comparison on

the knapsack problem is the primal-dual algorithm [28]. This algorithm is based on

the observation that for many instances of the knapsack problem only a relatively

small subset of items is crucial for the determination of the optimal solution. Items

with very high efficiencies will almost certainly be included in the optimal solu-

tion. Items with very low efficiencies will almost certainly be excluded from the

optimal solution. What remains is the set of items of “medium efficiency”, referred

to as the core set of items. The core set begins with the split item and expands out-

wards in both directions. That is, the core set of items expands to the “left” to

include more efficient items, and expands to the “right” to include less efficient

items. In the primal-dual algorithm, the binary decision variables xa+1, . . . , xb−1

are fixed at some value and it is assumed that xj = 1 for j ≤ a and xk = 0 for

k ≥ b. The profit and weight sums of the current configuration are denoted p̄ and

w̄, respectively. If w̄ ≤ c an item is inserted into the knapsack and otherwise an

item is removed from the knapsack.

The primal-dual algorithm has a branching factor of 2. Given a configuration

of binary decision variables, assume that w̄ ≤ c, then one child configuration is

generated by assigning xb = 0 and another configuration is generated by assigning

xb = 1. In either case, the right boundary b is incremented, b′ = b + 1. In a similar

fashion, if w̄ > c then one configuration is generated by assigning xa = 0 and
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another is generated by assigning xa = 1. The left boundary of these children

is decremented, a′ = a − 1. Suboptimal solutions are eliminated using an upper

bound estimate that is based on either the most efficient non-fixed item in the case

of an underfilled knapsack:
(c− w̄) pb

wb
, or the least efficient item in the knapsack in

the case of an overfilled knapsack:
(c− w̄) py

wy
such that y is the max where xy = 1.

There are three types of random distributions that are commonly used to gen-

erate test instances of the knapsack problem [28]. Each distribution assumes a data

range R for the profit and weight values and a problem size n for the total num-

ber of items. The uncorrelated distribution assumes that pj and wj are randomly

distributed in [1, R]. The weakly correlated distribution assumes that wj is ran-

domly distributed in [1, R] and pj is randomly distributed in
[
wj − 1

10 R, wj +
1
10 R
]
.

The term “weakly correlated” is somewhat misleading, as weakly correlated in-

stances have a very high correlation between the profit and weight of an item. The

strongly correlated distribution assumes that wj is randomly distributed in [1, R]

and pj = wj + 10. In all instances, there was no runtime improvement of the solver

when using the skip tree versus the skip list. In the next section we show that the

knapsack solver is a communication-bound problem. The cost of extracting the

minimum element and inserting new elements into the priority queue dominates

over the cost of computing the next child configuration.

5.7 Performance Analysis

The purpose of this section is to explore why the lock-free skip tree shows an im-

provement of up to x2.4 and x3.1 on the 15 puzzle and graph coloring applica-

tions, but did not yield any improvements on the asymmetric traveling salesman

problem and the 0-1 knapsack problem. Determining the reasons behind the per-

formance differences will guide a construction of a series of properties that are
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necessary for a branch-and-bound application to prefer a cache-conscious priority

queue (Section 5.9). The first step is to identify the computational phases that are

common to all four applications and then study the application differences in be-

havior across these common phases. The parallel branch-and-bound algorithm

consists of three primary phases. These are: (1) extract the minimum element

from the shared priority queue, (2) generate several children candidate solutions

based on the current candidate solution, and (3) if the bounding criterion has not

been reached, then insert each new child candidate solution into the shared prior-

ity queue. Extracting the minimum element is an O(1) operation in the absence

of thread contention. Inserting a new candidate solution into the shared priority

queue is an O(log S) operation in the absence of thread contention, where S is the

number of candidate solutions currently stored in the priority queue. In general,

it is difficult to estimate a tight upper bound on S for a specific input instance to a

parallel branch-and-bound solver.

To generate a child candidate solution, the full state of the parent solution must

be regenerated based on the partial state information stored in the parent solution

(explained in Section 5.2), and then the lower and upper bounds for the child can-

didate solution must be computed. For the 15 puzzle, generating the upper bound

estimate is O(1). For the graph coloring problem, computing the lower bound of

the chromatic number is O(E)+O(V), where E is the number of edges and V is the

number of vertices in the graph. For the asymmetric traveling salesman problem,

our directed minimum spanning tree solver uses the Bock adjacency matrix repre-

sentation [136] rather than the Chu–Liu/Edmonds graph representation [134, 135]

to avoid recreation of the graph at every partial solution. Calculating the upper

bound for the ATSP using the Bock representation has a worst case running time

of O(EV). The 0-1 knapsack problem calculates the upper bound of the profit on

a candidate solution in O(1) time for underfilled knapsacks and O(N) time for
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overfilled knapsacks, where N is the number of items from which selection is per-

formed.

Tables 5.1 and 5.2 show the runtime percentage of each phase of computation

for each of the four applications on the Niagara and quad core Xeon processors.

Each row shows a percentage that is relative to the total runtime of that problem

instance using the skip list data structure. The proportions in each skip list row

sum to one hundred, and the results in each skip tree row are some fraction relative

to the appropriate skip list row. The fourth column in the table records the total

number of candidate solutions explored in the search space. This column is used

as a surrogate for the maximum value of S, the number of candidate solutions

currently stored in the priority queue. The total number of candidates is used as a

proxy measure for the size of the queue. Estimating the number of elements stored

in a lock-free data structure at any point in time is an impractical exercise. Input

instances ‘A’ and ‘B’ for the 15 puzzle problem are specified in Figure 5.1a, and

input instances ‘C’ and ‘D’ for the graph coloring problem are specified in Figure

5.5a.

Based on the results shown in Tables 5.1 and 5.2, the computational phase that

is responsible for the majority of the performance differences between the skip

list and the skip tree is the insertion of candidate solutions into the shared prior-

ity queue. For input problems with a large total number of candidate solutions

explored in the search space, the proportion of time spent on inserting into the

queue is approximately halved. On the Niagara architecture, this proportion for

instance ‘B’ of the 15 puzzle problem moves from 89% for the skip list to 38% for

the skip tree and from 62% to 28% for instance ‘D’ of the graph coloring problem.

For the instances of the 15 puzzle and graph coloring problems that showed a rel-

ative loss in performance using the skip tree versus the skip list, the insertion of

candidate solutions is the culprit for this performance penalty. A verification that
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Application (input) Extract min Insert queue Computation Number of candidates

— skip list —
— skip tree —

15 puzzle (A)
4.8± 0.34 44.± 2.4 51.± 1.5 5.9 · 104 ± 1.7 · 103

4.3± 0.27 76.± 6.2 52.± 3.6 5.7 · 104 ± 4.3 · 103

15 puzzle (B)
1.1± 0.23 89.± 4.8 9.7± 0.36 2.8 · 107 ± 2.2 · 103

0.49± 0.075 38.± 8.3 7.2± 0.18 2.8 · 107 ± 1.8 · 103

Graph color (C)
2.7± 0.65 8.5± 1.6 89.± 11. 1.2 · 105 ± 2.2 · 104

5.8± 3.3 75.± 21. 83.± 9.4 1.1 · 105 ± 2.4 · 104

Graph color (D)
0.95± 0.10 62.± 2.4 37.± 0.37 3.2 · 107 ± 6.4 · 102

0.54± 0.15 28.± 2.4 42.± 0.085 3.2 · 107 ± 5.6 · 102

Asymmetric TSP
0.0087± 8.4 · 10−5 0.11± 0.002 99.± 0.11 1.0 · 106 ± 0
0.0081± 2.9 · 10−4 0.16± 0.004 99.± 0.06 1.0 · 106 ± 0

0-1 Knapsack
17.± 2.4 65.± 9.5 17.± 3.7 2.3 · 107 ± 0
26.± 3.7 49.± 4.6 20.± 1.9 2.3 · 107 ± 0

Table 5.1: Relative performance on Sun Fire T1000 (as percentage)

Application (input) Extract min Insert queue Computation Number of candidates

— skip list —
— skip tree —

15 puzzle (E)
12.± 0.95 45.± 3.7 42.± 3.3 5.6 · 104 ± 4.1 · 103

16.± 2.1 55.± 5.2 45.± 3.7 5.4 · 104 ± 4.5 · 103

15 puzzle (F)
1.9± 0.23 88.± 3.3 9.7± 0.39 1.3 · 108 ± 1.5 · 104

2.1± 0.11 36.± 2.4 9.3± 0.18 1.3 · 108 ± 1.6 · 104

Graph color (G)
15.± 3.5 20.± 4.4 65.± 12. 7.8 · 106 ± 1.6 · 106

15.± 2.6 55.± 12. 63.± 11. 8.0 · 106 ± 1.6 · 106

Graph color (H)
0.92± 0.25 79.± 2.7 20.± 1.1 2.2 · 108 ± 8.2 · 103

0.85± 0.065 18.± 1.2 20.± 1.1 2.2 · 108 ± 1.3 · 104

Asymmetric TSP
0.018± 4.5 · 10−4 0.13± 0.002 99.± 0.10 1.0 · 106 ± 0
0.014± 1.3 · 10−4 0.17± 0.003 95.± 0.10 1.0 · 106 ± 0

0-1 Knapsack
24.± 5.0 55.± 14. 21.± 9.2 2.3 · 107 ± 0
19.± 3.3 43.± 6.2 19.± 3.9 2.3 · 107 ± 0

Table 5.2: Relative performance on quad core Intel Xeon (as percentage)
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the insertion of candidate solutions is the bottleneck for small working set sizes is

shown below. The distribution of retries for insertion and extraction operations on

the queue is measured. For the small problem instances, insertion operations on

the skip tree require more attempts in order to succeed as compared to extraction

operations.

Why is there no performance improvement when using the skip tree over the

skip list on the asymmetric traveling salesman problem and the 0-1 knapsack prob-

lem? The evidence suggests that the working set size of these algorithms exceeds

the cache size for the specific problem instances that are evaluated in Table 5.1. The

total numbers of candidate solutions explored in the search space for the ATSP and

0-1 knapsack problems are 1.0 · 106 and 2.3 · 107, respectively. The total numbers

of candidate solutions explored in the search space for the large instances of the 15

puzzle and graph coloring problems are 2.8 · 107 and 3.2 · 107. The equal runtime

of the asymmetric traveling salesman problem solver is explained by the compu-

tational phase that calculates the lower bound estimate for each partial solution.

Over 99% of the total runtime is spent in this phase for the ATSP solver. This

leads to the first lesson in our characterization of parallel branch-and-bound ap-

plications in order to show benefit from a cache-conscious data structure: compute

bound applications will not show speedup as a consequence of Amdahl’s Law.

Table 5.3 shows the elapsed time per operation on the Sun Fire T1000. In gen-

eral, the extract minimum operation is the fastest operation. The elapsed time

of element insertion is proportional to the total number of candidate solutions

explored in the search space. Calculating the upper bound for instances of the

traveling salesman problem is two orders of magnitude longer than the bound cal-

culations for the other three applications. The 0-1 knapsack problem exhibits a

relatively long elapsed time for the extract minimum operation as compared to the

other three applications. For both the skip list and the skip tree, the average time
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Application (input) Extract min Insert queue Computation

— skip list —
— skip tree —

15 puzzle (A) 4.44± 0.37 18.8± 0.96 22.4± 0.53
3.29± 0.09 37.3± 0.91 23.4± 0.57

15 puzzle (B) 8.52± 1.16 483.± 48.2 42.3± 2.99
6.44± 2.91 308.± 68.9 35.5± 8.24

Graph color (C) 7.65± 16.9 10.3± 1.08 51.7± 7.78
3.28± 0.83 79.4± 5.84 54.8± 9.32

Graph color (D) 8.08± 1.03 124.± 9.61 51.5± 5.21
4.10± 0.28 51.4± 0.91 52.1± 0.39

Asymmetric TSP 0.92± 0.03 8.56± 0.39 9.76× 104 ± 102.
0.83± 0.02 11.7± 0.22 9.76× 104 ± 70.2

0-1 Knapsack 21.6± 8.37 82.8± 32.4 4.16± 2.27
31.6± 5.63 61.5± 18.5 3.97± 1.40

Table 5.3: Elapsed time per operation on Sun Fire T1000 (in microseconds)

to completion is 21.6 and 31.6 microseconds. The geometric means for the skip list

and the skip tree of the other five problem instances are 4.64 and 2.98 microsec-

onds. Why should the extract minimum operation take longer on the 0-1 knapsack

problem as compared to the other five problem instances? This is especially puz-

zling as we have established that the extract minimum operation has O(1) cost in

the absence of thread contention. We have established that these delays are due to

thread contention. To demonstrate this hypothesis, we conducted a series of tests

on the number of retries for the concurrent priority queue in all problem instances,

except for the asymmetric traveling salesman problem as we have explained the

behavior of that system. The next series of experiments measured the distributions

of retries for the extract minimum and insert element operations on the priority

queue.

In both the skip list and the skip tree, the failure of a compare-and-swap on an
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0 1-3 4-6 7-9 10+
15 puzzle (A) 62.5 31.7 4.90 0.75 0.15
15 puzzle (B) 83.2 15.9 0.85 0.06 0.01
Graph color (C) 64.5 30.3 4.53 0.58 0.01
Graph color (D) 91.9 7.92 0.17 0.00 0.00
0-1 Knapsack 29.6 40.0 14.7 6.27 9.40

(a) skip list extract minimum

0 1-3 4-6 7-9 10+
15 puzzle (A) 83.6 15.3 1.00 0.00 0.00
15 puzzle (B) 91.4 8.6 0.00 0.06 0.00
Graph color (C) 65.0 32.5 2.28 0.14 0.01
Graph color (D) 98.4 1.58 0.00 0.00 0.00
0-1 Knapsack 99.9 0.01 0.00 0.00 0.00

(b) skip list insertion (CAS)

0 1-3 4-6 7-9 10+
73.5 19.0 5.09 1.59 0.07
87.0 12.5 0.46 0.05 0.01
42.3 41.6 11.0 3.44 1.67
97.1 2.92 0.01 0.00 0.00

100.0 0.01 0.00 0.00 0.00

(c) skip list insertion (tree traversal)

0 1-3 4-6 7-9 10+
15 puzzle (A) 40.0 61.1 2.70 0.19 0.07
15 puzzle (B) 57.2 41.5 1.21 0.07 0.02
Graph color (C) 45.6 52.1 1.90 0.26 0.12
Graph color (D) 77.9 21.9 0.16 0.01 0.01
0-1 Knapsack 10.3 25.5 20.1 13.8 30.2

(d) skip tree extract minimum

0 1-3 4-6 7-9 10+
59.1 11.3 7.31 4.96 17.3
72.6 18.5 5.11 1.84 1.95
2.41 19.3 15.4 11.2 51.7
89.7 9.36 0.89 0.11 0.04
99.9 0.09 0.01 0.00 0.01

(e) skip tree insertion

Table 5.4: Number of retries for queue operations on Sun Fire T1000 (as percentage)
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Application (input) Extract min Insert queue Computation

— skip list —
— skip tree —

15 puzzle (E) 1.16± 0.04 2.11± 0.05 2.10± 0.09
1.53± 0.04 2.84± 0.07 2.14± 0.08

15 puzzle (F) 1.05± 0.03 27.3± 1.08 3.07± 0.15
1.24± 0.08 11.6± 0.74 2.88± 0.05

Graph color (G) 1.47± 0.04 1.82± 0.05 2.91± 0.15
1.38± 0.10 5.24± 0.18 2.72± 0.12

Graph color (H) 1.32± 0.10 31.0± 1.45 5.26± 0.19
1.45± 0.35 7.70± 0.69 5.82± 0.44

Asymmetric TSP 1.31± 0.04 1.35± 0.02 3.59× 103 ± 9.19
1.06± 0.06 1.67± 0.02 3.57× 103 ± 8.29

0-1 Knapsack 2.23± 0.65 5.11± 1.34 0.33± 0.12
1.87± 0.41 4.08± 0.71 0.28± 0.07

Table 5.5: Elapsed time per operation on quad core Intel Xeon (in microseconds)

extract minimum operation mandates restarting the extract min operation from the

head of the data structure. To measure the number of retries on an insert element

operation, we measured the attempts only for the leaf levels of the skip list and the

skip tree. When a compare-and-swap is unsuccessful on element insertion in the

skip tree, a localized search can proceed to find the appropriate node for insertion.

The skip list performs several consistency checks before an element is inserted

at the leaf level of the list. If one of the consistency checks is unsuccessful, then

the data structure is re-traversed from the root node to the leaves. In addition, if

a compare-and-swap operation is unsuccessful then another compare-and-swap

attempt will be made. We have separated the measurements for the number of

re-traversals and the number of compare-and-swap attempts on a skip list insert

operation.

In the measurements for the distribution of operation retries, the insert ele-
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ment operation is not a performance bottleneck in the 0-1 knapsack application

(see Table 5.4). Almost 100% of the element insertion operations succeed on the

first attempt using either the skip list or the skip tree. The knapsack problem suf-

fers contention from the extraction of elements from the head of the queue. With

the skip tree, 14.8% of extract min operations on the knapsack problem require

five or more attempts. With the skip list, 13.6% of the extract min operations on

the knapsack problem require five or more attempts. The contention at the head

of the priority queue raises the total proportion of execution time that is spent on

the extract minimum operations. This behavior has been confirmed in Tables 5.1

and 5.2. When a greater proportion of time is spent on the extract min operations,

as a consequence a smaller proportion of time must be spent on insert element

operations. The performance improvements of the skip tree on the insert element

operations are observed, but their effects are diluted by the greater time on extract

minimum operations.

In the next section, our goal is to generalize the observations made here to an

arbitrary optimization problem that is solved using the parallel branch-and-bound

solver, based on the information collected from the four applications. We have cre-

ated a synthetic branch and bound application to study the effects of application

characteristics on the relative performance of the skip tree priority queue. The

synthetic application is a simplified model of a real application. As a model it cap-

tures the characteristics of the actual application problems that are of interest, and

creates a set of assumptions that simplifies application characteristics that are not

of interest. It is our hypothesis that too much elapsed time on the lower bound

estimate leads to no improvement in performance, as observed in the asymmetric

traveling salesman problem. And too little elapsed time on the lower bound esti-

mate also leads to no improvement in performance, as observed in the 0-1 knap-

sack problem. Of equal interest are the effects of the branching factor and the
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0 1-3 4-6 7-9 10+
15 puzzle (A) 67.4 28.6 3.56 0.39 0.04
15 puzzle (B) 93.8 6.08 0.15 0.00 0.00
Graph color (C) 62.2 32.7 4.54 0.51 0.05
Graph color (D) 97.4 2.61 0.01 0.00 0.00
0-1 Knapsack 45.3 41.2 9.78 2.63 1.17

(a) skip list extract minimum

0 1-3 4-6 7-9 10+
15 puzzle (A) 91.8 8.13 0.09 0.00 0.00
15 puzzle (B) 98.9 1.13 0.00 0.00 0.00
Graph color (C) 75.5 24.1 0.38 0.01 0.00
Graph color (D) 99.9 0.23 0.00 0.00 0.00
0-1 Knapsack 100.0 0.00 0.00 0.00 0.00

(b) skip list insertion (CAS)

0 1-3 4-6 7-9 10+
81.3 15.2 2.75 0.59 0.15
96.8 3.15 0.07 0.00 0.00
48.5 37.9 9.67 2.77 1.11
99.3 0.73 0.00 0.00 0.00

100.0 0.00 0.00 0.00 0.00

(c) skip list insertion (tree traversal)

0 1-3 4-6 7-9 10+
15 puzzle (A) 48.4 43.4 6.01 1.35 0.83
15 puzzle (B) 79.9 19.4 0.59 0.04 0.00
Graph color (C) 56.4 39.0 3.72 0.65 0.22
Graph color (D) 87.6 12.3 0.03 0.00 0.00
0-1 Knapsack 37.2 47.9 10.6 2.8 1.43

(d) skip tree extract minimum

0 1-3 4-6 7-9 10+
69.4 21.6 6.11 1.88 0.98
87.7 11.6 0.67 0.05 0.00
30.7 47.8 14.8 4.52 2.08
96.5 3.52 0.02 0.00 0.00

100.0 0.03 0.00 0.00 0.00

(e) skip tree insertion

Table 5.6: Number of retries for queue operations on quad core Intel Xeon (as
percentage)



5.8. SYNTHETIC APPLICATION 133

distribution of lower bound estimates on the performance of the skip tree priority

queue.

5.8 Synthetic Application

We created a synthetic branch-and-bound application in order to study the char-

acteristics of an application that will yield a speedup when the skip tree is used

as the centralized data structure. This synthetic application is a simplification of

a real branch-and-bound application. It has been designed to test three hypothe-

ses of the branch-and-bound applications: (1) the distribution of lower bounds of

the candidates in the search space affects the performance of the skip tree; (2) the

computation time of the lower bound affects the performance of the skip tree; and

(3) the branching factor of the application affects the performance of the skip tree.

In the synthetic application we assume the objective function is a minimization

problem. We also assume that there is no upper bound. All generated children

instances are valid instances for the priority queue. In a real application, a tight

upper bound serves to limit the effective branching factor of the application, and

would also add additional computational cost of the upper bound that is not taken

into consideration by the synthetic application.

The synthetic application has a unique termination condition in that it does

not return a solution that has any semantic meaning. Instead it generates problem

instances until a predetermined limit is reached. When this limit has been reached

then the algorithm terminates. In our test cases this limit has been fixed at 2.5 · 107

instances on the Niagara server and 1.0 · 108 instances on the Intel Xeon server,

based on the number of generated candidates from the application benchmarks

as shown in Tables 5.1 and 5.2. The Xeon processor has larger cache sizes and

our test machine is configured with more memory as compared to the Niagara
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server. Each thread generates candidate solutions until a predetermined number

of solutions has been generated per worker thread. The state of a problem instance

in the synthetic application consists of a single 64-bit integer value that stores the

lower bound of the candidate solution. The lower bound of a child instance is

derived from the lower bound of the parent instance using one of three random

distributions.

The first distribution is uniform: it does not use the parent’s lower bound and

selects a new lower bound from a uniform probability distribution across the range

of 64-bit values. The second distribution is monotonically increasing: take the par-

ent’s lower bound and add to this lower bound a positive integer from a uniform

distribution. The monotonically increasing distribution places the least amount of

contention at the head of the priority queue, as elements tend to be inserted to-

wards the tail of the queue. The 15 puzzle and graph coloring problems are both

instances where the lower bound of a child is never less than or equal to the lower

bound of the parent. In the 15 puzzle problem, each child adds a new move to the

sequence of moves that have already been taken. In the graph coloring problem,

each child adds a new coloring to the set of vertices that have already been colored.

The third distribution is a restricted distribution: take the parent’s lower bound

and with a probability of 99.98% return the same lower bound, or with a proba-

bility of 0.01% increment the lower bound by one, or with a probability of 0.01%

decrement the lower bound by one. The primal-dual algorithm we used to solve

the 0-1 knapsack problem generates optimal profit estimates that fluctuate within

a narrow band of possibilities near the split solution. This characteristic is not spe-

cific to the primal-dual method of solving the 0-1 knapsack problem. A restricted

distribution of candidate solutions will arise because the optimal solution of the

0-1 knapsack problem tends to be very similar in structure to the greedy solution

of the knapsack problem. Fast solvers of the 0-1 knapsack problem that take ad-
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(a) Sun Fire uniform distribution

(b) Sun Fire monotonic distribution

(c) Sun Fire restricted distribution

(d) Intel Xeon uniform distribution

(e) Intel Xeon monotonic distribution

(f) Intel Xeon restricted distribution

Figure 5.9: Relative speedup on synthetic benchmark. Speedup is the ratio of skip
list to skip tree execution times.
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vantage of the expanding core set of items (see Section 5.6) will have a restricted

distribution of solutions.

A proxy calculation is used to represent the elapsed time of computing the

lower bound. The proxy calculation is the sum of the integers from 1 to N, where

N can be varied to adjust the duration of computation time. This implementation

is tunable, reproducible, and independent of any memory hierarchy effects. In our

initial experimental setup, the elapsed time of computing the lower bound was to

be determined using an independent variable that would vary the amount of time

a worker thread would sleep. The sleep interval would simulate the compute time

necessary for estimation of a lower bound. However, sub-millisecond precision for

sleep intervals is not implemented on the HotSpot Java Virtual Machine for either

x86 or SPARC architectures. Based on the limitations of the virtual machine, the

proxy calculation of the computation interval was developed to forgo precision of

the estimated computation time in exchange for accuracy.

The relative performance on the synthetic benchmark of the skip tree versus the

skip list on the Sun Fire and Intel Xeon is shown in Figure 5.9. The value N for the

computation cost is shown on the horizontal axis. The branching factor is shown

on the vertical axis. A heat-map of the relative speedup is plotted on a logarith-

mic scale. The logarithmic scale yields the same distance between 200% to 400%

relative speedup as with 25% to 50% relative speedup. Positive speedup is blue,

negative speedup is red, and no change in performance is white. Each probability

distribution of lower bound estimates has a direct impact on the relative perfor-

mance. A monotonic distribution incurs the least contention among concurrent

threads, while a restricted distribution incurs the most contention. The branching

factor affects the number of candidate solutions that are computed in between ex-

tract minimum operations. Therefore the branching factor dictates the rate of the

extract minimum operations. In general, a higher branching factor increases the
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performance of the skip tree over the skip list. A lower branching factor is usually

more desirable to minimize the overall size of the search space. The benefit of a

low branching factor is that the increase in search space size due to calculating two

generations of candidate solutions is relatively small when the branching factor is

low. The effect of a longer computation time is to dilute the effects of either the

performance advantage or disadvantage of the skip tree.

The distribution of lower bound estimates has a dominant impact on the per-

formance of the skip tree priority queue. On the Niagara architecture with a com-

putation cost between the values of 23 and 213, the mean speedup of the uniform

distribution is x1.25, the mean speedup of the monotonic distribution is x2.21, and

the mean speedup of the restricted distribution is x0.33. On the Intel Xeon archi-

tecture with the same computation costs, the mean speedups are x1.79 for the uni-

form distribution, x2.67 for the monotonic distribution, and x0.85 for the restricted

distribution.

5.9 Branch-and-Bound Guidelines

In this section, we provide guidelines for when to select the lock-free skip tree to

use as a centralized priority queue in a parallel branch-and-bound application ver-

sus the lock-free skip list. These guidelines are based on the results of the applica-

tion benchmarks on the N Puzzle, graph coloring, asymmetric traveling salesman

problem, and 0-1 knapsack problem and the results of the synthetic benchmarking

experiments just described.

Rule #1: Avoid contention at the head of the queue

A natural bottleneck in a concurrent priority queue is the head of the queue. When

new elements are inserted into the middle of the queue or the end of the queue,
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then fewer operations are placed on the head of the queue. In the synthetic bench-

mark, the monotonic distribution inserts elements into the end of the queue and

the uniform distribution inserts elements into any portion of the queue. The re-

stricted distribution inserts candidates within a narrow range of lower bound esti-

mates. The lock-free skip tree shows mean speedups of x2.21 and x2.67 on SPARC

and x86 platforms under the monotonic distribution and mean speedups of x1.25

and x1.79 under the uniform distribution. The skip tree exhibits worse perfor-

mance than the skip list under the restricted distribution with mean speedups of

x0.33 and x0.85.

In our performance analysis of the knapsack solver, 30% of extract minimum

operations using the skip list required four or more retries and 64% of extract mini-

mum operations using the skip tree required four or more retries. The next highest

percentage of four or more retries in extract minimum operations is 5% on the

graph coloring problem using the skip list and 3.7% on the 15 puzzle problem us-

ing the skip tree. Using the performance analysis for the knapsack solver and the

synthetic benchmark results, we can show that a relatively small computational

cost for the lower bound estimate correlates with higher contention at the head of

the queue. Tables 5.3 and 5.5 show the elapsed time per operation in microseconds

for the Sun Fire and Intel Xeon platforms. The elapsed time per computation for

the knapsack solver is 4.06 microseconds on the Sun Fire and 0.31 microseconds

on the Intel Xeon. The average elapsed time per computation on the other appli-

cation benchmarks (excluding the asymmetric traveling salesman solver) is 41.7

microseconds on the Sun Fire and 3.36 microseconds on the Intel Xeon. Figure 5.9

(c) and (f) show the relative performance of the skip tree on the synthetic appli-

cation with the restricted distribution to generate lower bound estimates. Smaller

computation costs are correlated with weaker performance from the lock-free skip

tree.
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Rule #2: Seek monotonic heuristic functions

Consistent (or monotone) heuristic functions are general strategies for traversing

through a state space that converge to the solution state without taking any back-

ward steps. Given a node n from the search space and a successor n′ of n, the esti-

mated cost of reaching the goal from n is no greater than the cost of getting from n

to n′ plus the estimated cost of reaching the goal from n′: h(n) ≤ c(n, n′) + h(n′).

The fifteen puzzle, graph coloring, and traveling salesman problem solvers use

monotonic estimates for the lower bound of partial solutions. In the fifteen puzzle,

each successor state in the search space represents the addition of a move towards

the target configuration of the board. In the graph coloring problem, each suc-

cessor state assigns a color to an uncolored node until eventually all of the nodes

have been assigned colors.The ATSP solver either selects a path along the tour of

the graph or eliminates a path from the selection process.

The primal-dual algorithm for solving the knapsack problem uses an incon-

sistent heuristic function. The knapsack is allowed to overfill so that successor

states may remove elements from the knapsack. There are cases when an incon-

sistent heuristic function is preferable to a consistent heuristic function [139, 140].

In the knapsack problem, the primal-dual algorithm constrains the state space to

improve the overall performance of the algorithm. These techniques are most com-

monly applied to the iterative deepening A* algorithm, which performs iterative

rounds of depth-first search. When applied to a breadth-first parallel branch and

bound solver, these techniques can add to contention to the head of the priority

queue.
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(a) (b)

Figure 5.10: Two fifteen puzzle instances from Korf [121].

Rule #3: Seek large working set sizes

For those applications that satisfy Rules #1 and #2, the greatest improvements in

performance of the skip tree versus the skip list are observed for those input prob-

lems that have the largest working set sizes. In Figures 5.1-5.7, all scenarios have

some threshold number of candidates, T, such that all initial states that have T or

more candidate solutions exhibit speedup using the skip tree versus the skip list.

In general, it is difficult to estimate the number of partial solutions that will be

generated for a specific initial state. For example, the N puzzle problem has no

known upper bound that is a function of the initial board state. Figure 5.10 shows

two initial states from the iterative deepening A* (IDA) algorithm used to solve

one hundred instances of the 15 puzzle in Korf [121]. Both instances have an initial

lower bound estimate of 41. The instance on the left generates 24,492,852 partial

solutions using the IDA solver. The instance on the right generates 1,369,596,778

partial solutions. We have shown that initial configurations with small working

set sizes can perform relatively worse using the skip tree versus the skip list. A

smaller working set size implies a shorter total execution time. The absolute time

that is lost on these initial configurations using the skip tree is small as compared

to the amount of time that is gained in those configurations with large working set

sizes.
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5.10 Shared Memory Supercomputers

5.10.1 Azul Appliance

The Azul compute appliance is a custom shared memory supercomputer designed

for the Java runtime environment. The processing unit of the compute appliance

is a Vega 3 processor, a 54 core 64-bit RISC processor. In addition to the standard

RISC instruction set, the Vega processor has a few specialized instructions to aid

the Java virtual machine in object allocation and garbage collection. Up to 16 Vega

processors can be installed on a compute appliance, for a total of 864 hardware

threads. On the compute appliance, each processor has three available banks of

four memory modules. Each core has a 16 kB L1 instruction cache and 16 kB L1

data cache. Each processor has six 2 MB unified L2 caches. Groups of 9 cores share

one L2 cache [141]. The Azul compute appliance runs on top of a minimalist op-

erating system and has its own Java virtual machine implementation that is based

on the OpenJDK project.

The Azul Java virtual machine uses a pauseless garbage collection algorithm

[142]. At no point in the pauseless garbage collection algorithm is there a Stop-

The-World pause, a pause in which all application threads must be simultaneously

stopped. Pauseless garbage collection provides soft real-time guarantees with re-

gard to memory management. A comparison of the SpecJBB benchmark with the

Azul Java virtual machine versus the HotSpot and IBM Java virtual machine re-

ported that worst-case transaction execution times were over 45 times better and

average execution times were comparable on the Azul JVM.

The tradeoff of the pauseless garbage collection is that low latency transac-

tions come at a penalty of increased heap size needed for the copying phase of

the garbage collection algorithm. We tested fifteen puzzle problem ‘F’ instance

and graph coloring problem ‘H’ instance on the Azul compute appliance. These
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Figure 5.11: Azul compute appliance. Speedup is relative to skip list execution
time using 8 threads.

were selected as the problem instances with the largest working set sizes from the

two applications that exhibited a performance improvement using the skip tree

versus the skip list. In the branch-and-bound applications, the average number of

processed candidates is independent of the number of worker threads that are run-

ning. The total working set size and the ratio of garbage objects to live objects are

constant factors relative to the number of worker threads. Therefore an increase in

worker threads yields an increase in the rate of non-live objects produced per unit

of time. Using Azul’s Real-Time Profiling and Monitoring Tool, the fifteen puzzle

and graph coloring applications running at 100 cores were shown to spend 85% of

the total runtime on the garbage collection algorithm under the available heap size

limitations.

Our resource allocation on an Azul compute appliance comprised 207 hard-

ware threads and 55 GB of heap space. The results of our tests on the Azul compute

appliance are shown in Figure 5.11. The baseline for the two applications we ran

is the execution runtime for the skip list using 8 hardware threads. The speedup

of the skip tree on the fifteen puzzle is x13.7 using 9 times as many threads when

compared to the baseline, and x14.5 on the graph coloring problem when using 10
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Figure 5.12: Graph coloring on Altix UV 1000. Speedup is relative to skip list
execution time using 8 threads.

times as many threads as the baseline. The speedup of the skip list on the fifteen

puzzle is x8.4 using 9 times as many threads as the baseline, and x6.9 on the graph

coloring problem when using 10 times as many threads.

5.10.2 SGI Altix UV 1000

The second shared-memory supercomputer that was used to test the application

benchmarks was Blacklight, a SGI Altix UV 1000. Blacklight consists of 256 blades

connected by a NUMAlink® 5 Interconnect. Each blade holds 2 Intel Xeon X7560

processors with 8 hardware threads per processor, for a total of 4096 hardware

threads on the machine. The 16 hardware threads of each blade share 128 GB of

memory; the total capacity of the machine is 32 TB. The processors are connected

in an 8 x 8 paired node 2D torus topology. Blacklight is running SUSE Linux En-

terprise Server 11 with a modified 2.6.32.12 Linux kernel.

The HotSpot Java virtual machine can run the fifteen puzzle and graph coloring

benchmarks on Blacklight up until about 64 hardware threads before no further

speedup is observed by the addition of more processors. The same behavior is

observed for the lock-free skip list and the lock-free skip tree. The default garbage
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collection implementations in HotSpot are NUMA-unaware. The parallel collector,

also known as the throughput collector, can be optionally enabled with NUMA-

aware support. Enabling NUMA support on HotSpot when running on Blacklight

crashes the virtual machine during its initialization phase. This behavior has been

observed with Java SE 1.6.0_22 and OpenJDK 1.7.0 binary release 114. This crash

is caused by an interaction of two features of the Linux kernel that are used to

allocate hardware resources on shared-memory NUMA architectures.

libnuma is a user space shared library that provides an API for implementing

NUMA policies in applications [143]. It allows an application to determine the un-

derlying memory topology of the hardware at runtime by querying the operating

system. libnuma can also be used to bind a thread to a specific processor. NUMA

support has been available in the Linux kernel in one form or another for all of the

2.6 release series.

Another mechanism for assigning a set of processors and memory nodes to a set

of tasks in the Linux kernel is the cpusets interface. A cpuset is composed of a set

of processor nodes and a set of memory nodes. The root cpuset contains all of the

processor nodes and memory nodes. Given a cpuset, a child cpuset can be defined

that contains a subset of the parent resources. Cpusets may be marked exclusive,

which ensures that no other cpuset except direct ancestors and descendants may

contain overlapping processor or memory resources. Cpusets appeared in version

2.6.7 of the Linux kernel. The Portable Batch System (PBS) is a job scheduler for

the allocation of batch jobs in a shared computational environment. PBS can be

configured to use cpusets to isolate tasks to a specific set of processors.

The NUMA-aware garbage collector in the HotSpot Java virtual machine is de-

signed to use libnuma for memory allocation, but does not query the cpuset in-

terface. The current implementation queries the machine for the total number of

online processors using the sysconf POSIX interface [144]. The libnuma API sets
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Figure 5.13: 16 queens on shared-memory supercomputers. Speedup is relative to
skip list execution time using 8 threads.

a hard limit on the number of processors that can participate in a NUMA mem-

ory set. The total number of online processors on the Blacklight supercomputer is

much larger than the processor limit set by the libnuma API. When the Java vir-

tual machine attempts to create a NUMA memory set as large as the number of

total processors on the system, the result is a crash in the initialization of the vir-

tual machine. We have written a patch for the OpenJDK that detects whether the

cpuset interface is present, and if so, then uses the cpuset interface to determine

the number of memory processors available.

The libnuma library exports two versions of its API to the user: libnuma 1.1 and

libnuma 1.2. The libnuma 1.1 API is not aware of cpuset constraints on a processor,

and the libnuma 1.2 API is aware of cpuset constraints. The OpenJDK currently

uses the libnuma 1.1 API. We have written a second patch to update the OpenJDK

to use the libnuma 1.2 interface. While writing the patch to the OpenJDK for the

libnuma 1.2 interface, we encountered a bug in the libnuma library. The documen-

tation for the function numa_get_mems_allowed() states the function returns a bit

vector of all the available memory nodes in the cpuset of a process. The function

returned an empty bit vector when a cpuset was applied to a process. We submit-
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ted a patch to correct the behavior of numa_get_mems_allowed() in the libnuma

library. The patch was adopted in the release of libnuma 2.0.6-rc4.

Figures 5.12a and 5.12b show the results of the graph coloring problem on the

Altix UV 1000. Figure 5.12a uses the non-NUMA concurrent garbage collection al-

gorithm, and Figure 5.12b uses the NUMA-aware concurrent garbage collector.

Speedup is normalized to the runtime of 8 threads using the skip list priority

queue. Each blade of the supercomputer can support 32 hardware threads: 16

cores with hyperthreading enabled. In all cases, the relative speedup does not im-

prove using more than one blade of the machine. The speedup using 88 threads

and the skip list priority queue is x1.3 the speedup using 32 threads. The speedup

using 88 threads and the skip tree priority queue is x0.6 the speedup using 32

threads. The NUMA-aware concurrent garbage collector yields a small improve-

ment on the performance of the skip tree priority queue on the graph coloring

solver.

To study the behavior of the OpenJDK on the Altix UV 1000 using a stan-

dard Java benchmark that does not rely on our lock-free skip tree, we selected

the N queens puzzle benchmark from the Java 7 fork/join testing framework. The

fork/join testing framework has been written by the members of the JCP JSR-166

Expert Group to measure the performance of the classes in the java.util.concurrent

library. The runtime of the N queens problem was measured for the 16 x 16 chess

board with 16 queens on the Altix UV 1000 and the Azul Systems compute appli-

ance. The relative speedup on this problem is shown in Figure 5.13. Speedup is

normalized to a runtime of 8 threads on the UV 1000 for measurements on that su-

percomputer, and a runtime of 8 threads on the Azul Systems compute appliance

for measurements on that supercomputer. Speedup is almost linear on the Azul

compute appliance. The N queens benchmark exhibits marginal speedup using

more than one blade on the Altix UV 1000.
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In this section, we have shown that it is possible to use shared-memory su-

percomputers efficiently to solve parallel branch-and-bound problems. For those

parallel branch-and-bound applications that exhibit the properties enumerated in

Section 5.9, the lock-free skip tree shows up to a x2.1 improvement in runtime as

compared to the lock-free skip list when running on 88 hardware threads.

In order for an application to scale across a shared-memory interconnection

communication layer, it is necessary for all the runtime layers underneath the ap-

plication to scale as well. The Azul compute appliance runs on top of a minimal-

ist operating system and has its own Java virtual machine implementation that is

based on the OpenJDK project. The SGI Altix is running a modified 2.6.32.12 Linux

kernel and a patched version of the OpenJDK 7 release. The OpenJDK runtime was

unable to scale across multiple blades when measured by the Java 7 fork/join test-

ing framework. There are several possible sources of resource contention on the

SGI Altix that are absent on the Azul compute appliance. The virtual memory

management of the operating system may be negatively impacting performance

of the OpenJDK garbage collection algorithm [145]. Virtual memory management

on the Azul appliance is cooperatively managed by the operating system and the

Java virtual machine. An Azul compute appliance has a relaxed consistency model

that shared characteristics of the Itanium memory ordering specification. The Azul

JVM is responsible to inserting memory fences wherever necessary to maintain the

Java memory model. Given the commercial success of a Java compute appliance

that can scale to hundreds of threads using specialized hardware, a specialized

operating system, and a specialized Java virtual machine, it is most likely that

significant modifications would be necessary to achieve the same scalability on a

conventional hardware and software stack.
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Chapter 6

Lock-Free Burst Trie

In this chapter we introduce the lock-free burst trie as an alternative to the lock-

free skip tree for those domains that can support a hash function that facilitates

radix sorting. To the best of our knowledge the lock-free burst trie algorithm is the

first of its kind. The lock-free trie offers a space/time tradeoff as compared to the

lock-free skip tree. Interior nodes of the lock-free trie store unused children refer-

ences in order to allow for a search through the tree that does not rely on element

comparison operations. After introducing the lock-free trie algorithm, we present

a series of synthetic benchmarks that measure the throughput of the concurrent

trie as compared to concurrent skip list, skip tree, and Blink-tree implementations.

The burst trie exhibits the highest peak throughput across all four scenarios and

two architectures. The mean peak throughput of the burst trie is x3.5 higher than

the data structure with the second highest peak throughput across all scenarios on

the Sun Fire T1000 and x2.8 higher across all scenarios on the Intel Xeon L5430.

In Chapter 4 we constructed a lock-free cache-conscious data structure that

implements an abstract ordered set with O(log n) expected cost for sequential

contains, add, and remove operations. Next, we study whether it is possible to

improve upon the O(log n) expected cost in designing a lock-free cache-conscious
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Figure 6.1: Trie example. Contains the strings {“ant”, “are”, “ate”, “be”}.

data structure that implements an ordered set. The lower bounds for comparison-

based sorted data structures is Ω(log n). In order to improve upon these lower

bounds, we must use a radix sorting scheme as the basis of the data structure.

The question of how to improve upon the O(log n) expected cost of the skip tree

is motivated by the existence of the hopscotch hashing algorithm. The hopscotch

algorithm defines a class of concurrent cache-conscious resizable hash tables with

O(1) expected time for contains, add, and remove operations. There exists a lock-

free cache-conscious hopscotch hash table algorithm [85], yet the hash table im-

plements an abstract unordered set abstraction. One ordered data structure that

combines tree-based data structures and hash-based data structures is a trie, or a

prefix tree. In this chapter we introduce a novel lock-free trie algorithm and com-

pare the performance of the lock-free trie implementation to our lock-free skip tree

implementation.

A trie, or a prefix tree, is an ordered tree data structure. A trie node separates an

input element into a prefix component and a remainder component, and then uses

the prefix to locate the next node in the data structure. A child node will accept

the remainder component of a parent node and recursively search for the target

element [146, 88, 147–149, 87]. The leaf nodes contain the remainder components

of one or more elements. One example of a trie is shown in Figure 6.1.
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Figure 6.2: HAT-trie data structure. The figure is adapted from Askitis and Sinha
[86].

The set of domains T that are permissible to be stored in a trie data struc-

ture are those domains that have defined a total ordering and a prefix operation

pre(e) : T → T for all elements of length greater than 0. The prefix operation

must shorten the length of the element, |pre(e)| < |e|, and it must preserve the

total ordering of the elements: pre(e1) < pre(e2) → e1 < e2. A trie provides O(|e|)

contains, add, and remove operations while maintaining the ordered property of

the elements. The interior nodes may contain either a strict subset of all possible

elements returned by the prefix operation (as in Figure 6.1), or a set equal to all

possible elements returned by the prefix operation (as in Figure 6.2). If the interior

nodes contain a strict subset of all possible elements, then an interior node with i

prefixes contains 2i + 1 possibly-null references to children nodes. One variation

of tries that contains exactly one prefix per interior node is known as a ternary

search tree [150, 151], with each interior node containing three child references. If

the interior node contains all possible elements returned by the prefix operation,

then an interior node with i prefixes contains i possibly-null references to children

nodes.

A burst trie is a specialized trie such that each leaf node of the trie is a container

for some small, constant number of elements. As elements are inserted into the

burst trie, the leaf nodes increase in size until a container reaches its maximum
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size [87]. When a container reaches its maximum size, the container is burst into

an internal trie node along with a family of new empty container nodes. The child

container nodes are then populated by the elements that were stored in the orig-

inal container. Each interior node of the burst trie contains all possible elements

returned by the prefix operation. In the original burst trie paper, the container is

implemented using a balanced binary search tree. Askitis and Sinha [86] define the

HAT-trie as a variation of the burst trie whereby the containers are implemented

as fixed size arrays. An example of a HAT-trie is shown in Figure 6.2.

6.1 Lock-Free Algorithm

The lock-free burst trie implements a linearizable ordered set data structure over

some domain T. On the domain T a prefix function is defined that satisfies the

following properties. The prefix operation must shorten the length of the element,

|pre(e)| < |e|, and it must preserve the total ordering of the elements: pre(e1) <

pre(e2) → e1 < e2. Three operations are supported by the lock-free burst trie:

contains, add, and remove. The lock-free trie contains two types of nodes: an array

node and an index node. An array node is implemented as an immutable array

of elements e ∈ T. The array nodes form the leaf nodes of the burst trie. An

array node may contain at most n elements for some constant n ∈ N. An index

node contains an array of atomic references of length i, where i is the total number

Figure 6.3: Burst trie state diagram.
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of prefixes that could be returned by the prefix operation. An array of atomic

references supports the atomic compare-and-swap operation for each cell of the

array. Each child reference in a container node can point to one of the following

three types of objects: a null reference, an array node, or an index node.

A new burst trie is represented with a single index node with all children as

null references. The state transition diagram for the lock-free burst trie is shown in

Figure 6.3. Each child reference moves from the null state to the array state to the

index state during its lifecycle. A child reference is permitted only to move forward

in the state transition diagram. A child reference in the array state can become as

small as an array of length zero. The subtree of a node in the index state can only

become as small as recursively allowed by the child references of the index node.

Our experience with designing a lock-free skip tree has shown that adding ele-

ments into a lock-free data structure is relatively easy. Removing elements from a

lock-free data structure and eliminating nodes of the data structure is more compli-

cated. The trie design requires a space/time tradeoff to improve the upper bound

of contains, add, and remove operations in the absence of thread contention from

O(log N) to O(|e|). Our lock-free implementation further exploits the reliance on

available space. Empty array nodes and index nodes are not eliminated from the

data structure. As we will show, retaining empty nodes simplifies the process of

bursting array nodes into index nodes in the presence of concurrent updates to the

data structure.

A contains operation begins at the root of the trie. The prefix of the target

element is used to determine the index of the correct child reference in which to

continue traversing the tree. The tree traversal recursively searches the subtrie

whose root is the child reference. Eventually, either a null child node or an array

child node will be encountered. If a null child reference is encountered, then the

target element is not a member of the abstract set. If an array node is encountered,
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then the target element is a member of the abstract set if-and-only-if it is a member

of the array node. Recall that array nodes are immutable objects. Therefore the

first encounter with an array node object is a linearization point of the contains

operation. The other linearization point is the first encounter with a null child

reference.

On the traversal from a parent index node to a child index node, the prefix of the

target element can be discarded for the remainder of the search. Target elements

that are shorter than the path length through the trie are resolved with the addition

of a special terminal token to the set of possible values in the prefix operation.

The terminal token is reserved for no more input, we use the ’\0’ character for

ASCII strings. When the terminal token is encountered in an index node, the child

reference is either a null reference, an array node that contains zero elements, or an

array node that contains a single element consisting of the special token. Tokens

are not consumed when traversing from a parent index node to a child array node.

An add operation begins as a contains operation with a trie traversal to find

the point of insertion. At the end of the traversal a child reference is reached that

is either a null reference or an array node reference. If an array node reference is

reached and the array node contains the target element, then the add operation ter-

minates. Otherwise a compare-and-swap is performed on the designated index in

the atomic reference array of the index node. The linearization point of all update

operations on the lock-free burst trie is the parent index node of the array node to

be updated. Array nodes are immutable and linearizable semantics are preserved

through atomic operations on index nodes. If the child reference is either a null

reference or an array node reference that contains less than n elements, then a new

array node is created that contains all the existing elements and the new element. A

compare-and-swap replaces the existing child reference with the new array node.

If the array node contains n elements, then the array node must be burst into an
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index node before the new element can be added.

The burst of an array node creates an index node whose children contain the

same set of elements as in the original array node. A compare-and-swap replaces

the full array node with the new index node. Concurrent add operations that are

attempting to insert into a full array node will perform redundant work as each

thread creates an independent index node as a result of a burst. Only one of the

concurrent add operations will successfully compare-and-swap the full array node

with the new index node. After a node has been burst, the insertion of the target

element by the add operation may continue.

A remove operation is successful through the transformation of an array ref-

erence into a new array reference that contains all of the elements in the original

array node with the exception of the element to be removed. Empty array nodes

are those that contain zero elements. This technique has been borrowed from the

lock-free skip tree implementation, where zero element arrays are used in shrink-

ing the data structure. The lock-free skip tree uses on-demand elimination of zero

element arrays. New elements are not inserted into zero element arrays to ensure

that the arrays can be removed from the data structure. The lock-free burst trie

does not shrink when elements are deleted. The burst trie implementation allows

new elements to be inserted into a zero element array using the compare-and-swap

technique.

6.2 Synthetic Benchmarks

Performance analysis is conducted with the experimental design that was used in

chapters 3 and 4 [35, 104, 95]. Synthetic workloads are created that vary in pro-

portions of contains, add, and remove operations and in the number of unique

elements stored by the data structure. Half of the workloads use a 90
100 : 9

100 : 1
100 ra-
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tio of operations. The other half use a 1
3 :1

3 :1
3 ratio of operations. Five million op-

erations are executed in each independent trial, while the total throughput of the

data structure as measured by the number of concurrently executing threads varies

from 20 to 211. The benchmarks in Chapters 3 and 4 used 32-bit integers as the do-

main from which five million elements were randomly selected. In the throughput

benchmarks of sequential burst trie implementations, randomly generated strings

are the most common domain that is tested in the literature [87, 86]. Strings are

generated with a random length from a uniform distribution between fifty and

one hundred characters. In our implementation, the set of ASCII characters is

used as the set of acceptable input characters to be stored in the data structures. By

limiting the input to the set of ASCII characters, each index node of the lock-free

burst trie contains two hundred fifty six child references. If the set of input charac-

ters had been extended to the set of UTF-16 Unicode characters supported by the

Java language specification, some sort of multilevel index node would have been

necessary to accommodate all 216 possible input tokens.

Benchmarks were evaluated on a Sun Fire T1000 and an Intel Xeon L5430. The

benchmarks were executed on the 32-bit server version of the HotSpot Java Virtual

Machine version 1.6.0 update 16. Explicit parameters for the virtual machine are 2

GB heap size and 128 kB thread stack size. The Sun Fire has eight UltraSPARC T1

cores at 1.0 GHz and thirty two hardware threads. The cores share a 3 MB level-2

unified cache. The operating system version on the Sun Fire T1000 is Solaris 10.

The Xeon L5430 has four cores at 2.66 GHz and eight hardware threads. Each pair

of cores shares a 6 MB level-2 unified cache. The operating system distribution is

CentOS release 5.3 with Linux kernel 2.6.29-2.

We compare four implementations of linearizable concurrent ordered sets:

• skip list - the ConcurrentSkipListSet in the java.util.concurrent library.

Written by members of the JCP JSR-166 Expert Group.
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(a) read scenario with 5,000,000 elements
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(b) write scenario with 5,000,000 elements

Figure 6.4: Large synthetic string benchmark on Sun Fire T1000
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(a) read scenario with 512 elements

0
2
0
0
0

4
0

0
0

6
0
0
0

8
0
0

0

number of threads

th
ro

u
g
h
p
u
t 
(o

p
s
./
s
e

c
.)

burst trie
skip tree

skip list

B
link

 tree

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

(b) write scenario with 512 elements

Figure 6.5: Small synthetic string benchmark on Sun Fire T1000
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0
2
0
0
0

6
0
0
0

1
0
0
0
0

number of threads

th
ro

u
g
h
p
u
t 
(o

p
s
./
s
e

c
.)

burst trie
skip tree

skip list

B
link

 tree

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

(b) write scenario with 5,000,000 elements

Figure 6.6: Large synthetic string benchmark on quad core Intel Xeon
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Figure 6.7: Small synthetic string benchmark on quad core Intel Xeon
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Figure 6.8: Heap usage of data structures in the beginning of the write scenario
with 5,000,000 elements on Sun Fire T1000.

• skip tree - the lock-free skip tree algorithm defined in chapter 4.

• burst trie - the lock-free burst trie algorithm defined in this chapter.

• Blink-tree - a concurrent B-tree algorithm developed by Lehman and Yao [101]

and refined by Sagiv [97].

Configuration parameters for the skip tree and Blink-tree were selected from the

optimal values in the parameter sweeps conducted in Section 4.7. The probability

of failure q for the geometric distribution of heights in the skip tree was assigned

a value of 1/32 for the Sun Fire T1000 and 1/8 on the Intel Xeon L5430, which are

the optimal values for the synthetic benchmarks as determined in Chapter 4. The

minimum node length selected for the Blink-tree was 256 for both architecture con-

figurations. The maximum size of array nodes in the burst trie was selected to be

32 elements.

The results of the synthetic benchmarks are shown in Figures 6.4 - 6.5 for the

Sun Fire T1000 and Figures 6.6 - 6.7 for the Intel Xeon L5430. The burst trie exhibits

the highest peak throughput across all four scenarios and both architectures. The



6.2. SYNTHETIC BENCHMARKS 161

1 2 3 4 5 6
array size

# 
of

 in
st

an
ce

s
0

1e
10

6
2e

10
6

3e
10

6

2,467,265

  371,471

   37,183     2,820       155         9

Figure 6.9: Distribution of trie array node sizes in the beginning of the write sce-
nario with 5,000,000 elements on Sun Fire T1000.

mean peak throughput of the burst trie is x3.5 higher than the data structure with

the second highest peak throughput across all scenarios on the Sun Fire T1000

and x2.8 higher across all scenarios on the Intel Xeon L5430. The skip list, skip

tree, and Blink-tree have the same relative performance characteristics as measured

in the synthetic benchmarks from Section 4.7. The skip tree dominates the skip

list when the working set size exceeds the cache size. The Blink-tree exhibits low

throughput for workloads that contain a small number of elements due to lock con-

tention. The peak throughput of the burst trie is observed at 16 threads across all

four workloads on the Sun Fire, unlike the skip list, skip tree, and Blink-tree which

all have peak throughput at 32 threads. Each UltraSPARC T1 processor is made

up of 8 cores, and each core supports four threads, known as a “thread group.”

Each thread in the group has a unique set of registers and an instruction buffer,

but the thread group shares L1 cache, instruction and data TLB entries, execution

units and other pipeline resources [152]. The maximum throughput is observed

when each thread group is only half full across all processors, presumably due to

contention for one or more thread group shared resources.
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The heap utilization of all four data structures was measured for the write

scenario with five million elements on the Sun Fire T1000. A heap dump was

generated subsequent to the loading of strings that are designated for contains

and remove operations, and prior to the actual multithreaded testing of through-

put. Unreachable objects are eliminated from the heap dump, and all instances

of classes within the data structure are tallied. The space allocated for the strings

themselves is not included in the analysis. The results of the heap analysis are

shown in Figure 6.8. At the time of the heap dump, the data structure consists of

the elements for contains and remove operations or approximately 3, 333, 333 ele-

ments. The skip tree and Blink-tree use an average of 35 bytes per element, the skip

list uses an average of 60 bytes per element and the burst trie uses an average of

84 bytes per element. The synthetic benchmarks on the Niagara and Intel architec-

tures were executed using a 32-bit Java virtual machine. The distribution of array

node sizes for the burst trie is shown in Figure 6.9. Why is an exponential distri-

bution observed for the array sizes? The array nodes can have a size between 0

and n elements, where n is some maximum allowable size (n = 32 in the synthetic

benchmarks). Given a uniform distribution of input elements to the data struc-

ture, at first impression we would expect a uniform distribution of array sizes. But

what happens when an array node is burst? In circumstances when the input el-

ements can be modeled as a uniform distribution, we would expect the creation

of min(m, n) new array nodes, where m is the number of indices per index node

(m = 256 in the synthetic benchmark). The average size of each new array node

is
⌈ n

m
⌉
. Therefore, when m � n there is a bias towards small array nodes. The

abundance of small array nodes yields an inefficient use of heap space as singleton

elements become boxed inside array nodes of length 1.
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6.3 Lock-free Trie and Tree Comparisons

The burst trie exhibits the highest peak throughput across all four scenarios and

both architectures in the synthetic benchmarks. With an input domain of randomly

generated ASCII strings of fifty to one hundred characters in length, the heap us-

age of the burst trie is x2.4 larger as compared to the skip tree. We have shown that

the increase in heap usage is due to the large number of singleton elements that

become boxed inside array nodes of length 1. Askitis and Sinha [86] have shown

that array nodes from several different prefix sets can be combined into a single

node in order to avoid an overwhelming number of small array nodes. The illus-

tration of a HAT trie in Figure 6.2 contains three combined nodes: ‘a’ - ‘l’, ‘m’ - ‘z’,

and ‘c’ - ‘z’. There are several issues to be worked out in order to use a combined

array node in the lock-free burst trie. The new concurrent algorithm would contain

a new fourth state, “combined array”, to be placed in between the states “array”

and “index” in Figure 6.3. Askitis and Sinha use several heuristics to determine

the boundaries for defining new combined array nodes upon the bursting of an

index node. It would be prudent to prove the generality of these heuristics beyond

the specific application of randomly distributed ASCII strings. Another strategy

for reducing the memory footprint of a trie is to cache several child entries inside

each index of an array node. This strategy is employed by Bagwell’s hash array

mapped tries [153].

The primary limitation of the lock-free burst trie is that it places an additional

constraint upon the domain set of elements stored in the data structure. Our im-

plementation of the burst trie accepts a proxy object when it is constructed. The

type of the proxy object implements an interface upon the domain set T that con-

tains one method with the signature pre f ix (input : T, depth : N) → N. Given a

member of the domain set, input, and a depth at which to extract a prefix of input,

the method returns an integer between 0 and m− 1, where m is the number of in-
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dices per index node. The prefix operation on the domain set must preserve the

total ordering of the elements: ∀d ∈ N, pre f ix(input1, d) < pre f ix(input2, d) →

input1 < input2. The parameter m has an impact upon the performance and heap

usage of the trie. A small value of m will increase the depth of the trie, and a large

value of m will increase the size of each index node. For very large value of m,

such as m = 216 in the case when the input domain is the set of all UTF-16 Uni-

code characters supported by the Java primitive type ‘char’, a multi-level indexing

structure would be required for the index nodes. For UTF-16 Unicode characters,

a burst trie implemented using a one level index would take up 221 bytes or 2 MB

of heap space per index node, assuming 32-bit pointers per child reference.

An optimal lock-free burst trie requires the tuning of three parameters: m, the

number of indices per node, n, the maximum number of elements per array node,

and l, the number of levels in the indexing structure. An optimal set of configu-

ration values for a burst trie parametrized on the domain set T is dependent on

the selected implementation of the pre f ix function for that specific domain. In

contrast, the lock-free skip tree requires the tuning of exactly one parameter, the

average number of elements stored per node. As we have shown in the applica-

tion benchmarks in sections 5.3 and 5.4, the average number of elements in a skip

tree node can be tuned to a specific architecture and deliver optimal results inde-

pendently of the domain set. The lock-free burst trie has promise for improved

performance in a concurrent application, but the complexity of its configuration

limits its usefulness as a general-purpose data structure.

The question raised at the onset of this chapter was whether it is possible to

improve upon the O(log n) expected cost in designing a lock-free cache-conscious

data structure that implements an ordered set. A solution has been found that pro-

vides O(|e|) sequential contains, add, and remove operations. The lock-free burst

trie inherits both desirable and undesirable characteristics from its parental data
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structure designs, the search tree and the hash table. The trie maintains an ordered

set abstraction and exhibits a relatively higher throughput than the lock-free skip

tree on the synthetic benchmarks. In order to benefit from the advantages of the

lock-free trie it is necessary to define a prefix function on the input domain in order

to use the data structure. The tuning of the three parameters m, n, and l play an

important role in the performance of the data structure. The skip tree has exhib-

ited good performance characteristics across a range of input domains: synthetic

benchmarks using 32-bit integer input in Section 4.7, synthetic benchmarks using

ASCII character input in the previous section, and application benchmarks solving

the 15 Puzzle and Graph Coloring problems in Sections 5.3 and 5.4. The hopscotch

algorithm has also showed good performance characteristics in several applica-

tion domains [154, 155]. The skip tree leverages the strengths of comparison-based

indexing, and the hopscotch algorithm leverages the strengths of hash-based in-

dexing. It is not surprising that the combination of these two algorithmic designs

does have performance advantages but is constrained to work successfully only

for those input domains that can leverage both the comparison-based and hash-

based indexing schemes.
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Chapter 7

Conclusions & Future Work

We have shown that the design of cache-conscious, linearizable concurrent data

structures has advantageous performance that can be measured across multiple

architecture platforms. The improved performance arises from the memory wall

phenomenon that is ubiquitous to current multi-core systems and almost certainly

will continue to affect future many-core systems. The two primary design contri-

butions of this dissertation are the novel lock-free skip tree and lock-free burst trie

algorithms. In both algorithms, read-only operations are wait-free and modifica-

tion operations are lock-free.

A series of synthetic benchmarks have shown that our lock-free skip tree and

burst trie implementations perform up to x2.3 and x3.5 faster in read-dominated

workloads on SPARC and x86 architectures, respectively, compared to the state of

the art lock-free skip list. The minimum performance of the skip tree across all

workloads and architectures is x0.87 relative to the skip list performance. An anal-

ysis of heap utilization of the data structures in the synthetic benchmark reveals

the lock-free skip tree to use 59% of the heap utilization of the skip list and the

lock-free burst trie to use 140% of the skip list heap utilization.

We selected four NP-hard problems to solve using a parallel branch-and-bound
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technique: N puzzle, graph coloring, asymmetric traveling salesman, and 0-1 knap-

sack. Two of the applications are x2.3 and x3.1 faster when using the skip tree as

a concurrent priority queue as compared to the lock-free skip list priority queue.

On a shared-memory supercomputer, the speedup of the skip tree on the fifteen

puzzle is x13.7 using 9 times as many threads when compared to the baseline ex-

ecution, and x14.5 on the graph coloring problem when using 10 times as many

threads as the baseline execution. The speedup of the skip list on the fifteen puz-

zle is x8.4 using 9 times as many threads as the baseline, and x6.9 on the graph

coloring problem when using 10 times as many threads as the baseline. The two

branch-and-bound applications are x1.6 and x2.1 faster using the skip tree versus

the skip list as a centralized priority queue running on either 80 or 88 hardware

threads. Based on the four application benchmarks and the synthetic benchmark,

guidelines were determined for selecting the lock-free skip tree to use as a central-

ized priority queue in a parallel branch-and-bound application.

We have made the lock-free skip tree implementation available online [11]. The

source code for the lock-free skip tree has been released to the public domain, as

described at http://creativecommons.org/licenses/publicdomain. It is our in-

tent to submit this implementation to the Java Concurrency Expert Group as a

proposal for inclusion to jsr166z and eventual inclusion into the Java 8 concur-

rency library. We anticipate that the configuration parameters of the lock-free skip

tree implementation will not contribute to a significant variability in application

performance. The lock-free skip tree relies on a single parameter, q, to determine

the average number of elements per node of the data structure. To improve the

efficiency of the pseudo-random number generator, q is restricted in our imple-

mentation to 1/2k, k ∈ N . The optimal value of q was determined to be 1/8 on

the quad core Intel Xeon and 1/32 on the Sun Fire T1000. Our study of parameter

variations on q for both architectures (Figures 4.17 - 4.20) have shown that values
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of k that are near each other yield similar maximum throughput on the synthetic

benchmarks.

We anticipate to find more applications of the lock-free skip tree and lock-free

burst trie data structures. The lock-free skip tree implementation is a drop-in re-

placement for the popular java.util.concurrent skip list implementation. The lock-

free skip tree will be adopted by applications that experience a performance bot-

tleneck in skip list operations. For example, the Apache Cassandra distributed

database relies on the skip list to store column families in sorted order (see Section

5.1). Our tests indicate that the disk access latency and network access latency com-

prise the primary bottlenecks in database throughput in the Cassandra benchmark

suites. If configured as an in-memory database in a network with low-latency in-

terconnects, it is possible that our skip tree implementation would improve per-

formance on the benchmarks.

Our lock-free burst trie implementation contains both opportunities and chal-

lenges for its adoption in real-world applications. In the synthetic benchmarks, the

mean peak throughput of the burst trie is x3.5 higher than the data structure with

the second highest peak throughput across all scenarios on the Sun Fire T1000 and

x2.8 higher across all scenarios on the quad core Intel Xeon. Good performance

of the burst trie requires tuning three parameters: m, the number of indices per

node, n, the maximum number of elements per array node, and l, the number of

levels in the indexing structure. The target domain of elements to be stored in a

burst trie must also define an efficient prefix function. One target domain would

be bioinformatics applications that typically have small alphabet sizes: 4 letters for

nucleotide base pairs, 20 letters for amino acids, etc. The success of the burst trie

in the domain of bioinformatics depends on the determination of an application

that requires input data to be both categorized and sorted. If only categorization

is needed, to identify uniqueness for example, then a concurrent hash table would
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suffice.

A necessary condition for peak scalability and performance on modern hard-

ware is application execution that is aware of the memory hierarchy. There are at

least three strategies for designing applications that are aware of the memory hier-

archy. The first strategy involves transforming the implementation of the applica-

tion to increase locality of reference. The second strategy moves the coordination

of data access into an application library that can be used by multiple applications.

This is the strategy employed by the lock-free skip tree and burst trie implemen-

tations. The third strategy moves the coordination of data access into the runtime

system. If the application is written in a language that specifies what to compute

without specifying how to compute, there are opportunities for the runtime system

to determine the most efficient use of available resources.

Our near-term goals rest on identifying developer libraries that stand to ben-

efit from cache-conscious randomization algorithms. A great deal of previous

work has focused on cache-conscious developer libraries for regular computa-

tional patterns (loops). PLASMA is a linear algebra library for multicore archi-

tectures. MAGMA is a linear algebra library for hybrid x86-based multicores ac-

celerated with GPUs [156]. Less work is available on irregular pointer-based algo-

rithms. Such pointer-based applications rely on recursive data structures such as

linked lists, trees, and graphs, where individual nodes are dynamically allocated

and nodes are linked together through pointers to form the overall structure.

Our long-term goals seek to transform runtime systems so that the runtime can

manipulate input programs to respond to heterogeneous parallel architectures. A

new generation of parallel languages provide programming constructs for spec-

ifying what a program should produce without explicit instructions on how the

computation is performed. However, runtime frameworks are largely designed to

accept intermediate-level program representations that have thrown away much
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of the high-level information. As the number of cores per processor increases, the

relative penalty of devoting an entire core to the runtime optimization framework

decreases.

7.1 Future Work: Developer Libraries

The general strategy for increasing spatial locality in pointer-based computational

patterns is the enforcement of some type of contiguous layout of data onto an ir-

regular data structure such as a linked list, a tree, or a graph. This strategy can

be subverted by the presence of concurrent modifications. Concurrent reads to

neighboring locations of memory improve data access by populating the memory

hierarchy. However, concurrent writes to neighboring locations increase commu-

nication among processors. We have employed a randomization technique to im-

pose an overall structure on the data structure and yet divide the data structure

into smaller regions so that concurrent writes are split across the regions. By us-

ing a randomized algorithm, concurrent threads do not need to communicate to

maintain some type of internal balancing requirement.

One promising area of developer libraries that could benefit from cache-conscious

randomized algorithms are graph processing libraries. A number of research projects

have been undertaken to perform data processing over acyclic nested data struc-

tures [157–159] or cyclic graph-based data structures [160]. Graph algorithms often

exhibit poor locality of memory access, very little work per vertex, and a chang-

ing degree of parallelism over the course of execution. The distribution of work in

these application libraries could benefit from a cache-conscious randomized tech-

nique. For example, the Pregel graph library requires a user to specify a custom as-

signment function from graph vertices to compute machines in order to exploit lo-

cality [160]. The graph library could benefit from a dynamic re-partitioning mech-
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anism, possibility similar in structure to the hopscotch hashing technique [85].

Spatial locality is preserved in hopscotch hashing by using overlapping neigh-

borhoods of buckets in which an element of one neighborhood can be swapped

with an element of another neighborhood in order to create an empty element in a

neighborhood that is otherwise full (Figure 2.5).

There is a strong interest in maximizing the efficiency of parallel algorithms

that have irregular communication patterns. The Berkeley report on the Land-

scape of Parallel Computing identifies thirteen broad classes of computational al-

gorithms which the authors believe will be important for science and engineering

for at least the next decade [2]. Five of the thirteen classes have irregular commu-

nication patterns: Unstructured Grids, Graph Traversal, Backtrack and Branch &

Bound, Constructing Graphical Models, and Finite State Machines. The Lonestar

benchmarks is a suite of parallel irregular programs developed at the University

of Texas at Austin. This benchmark suite consists of Agglomerative Clustering,

Barnes-Hut N-Body Simulation, Delaunay Mesh Refinement, Delaunay Triangula-

tion, Focused Communities, and Survey Propagation [161]. Our near-term goals

rest on identifying scientific applications with irregular communication patterns

that stand to benefit from cache-conscious randomization algorithms.

7.2 Future Work: Application Runtime

Microprocessor architecture appears to be trending towards more complex mem-

ory hierarchies and more concurrent computational units. A research challenge for

the immediate future is to develop portable, scalable, and efficient techniques for

writing applications to run on these architectures. The threads model of program-

ming requires explicit synchronization among communicating threads. A thread-

less concurrency model provides a simpler programming model than a thread
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model and has a potential for portability across different parallel architectures.

Examples of programming languages that provide thread-less concurrency mod-

els are Cilk [162], X10 [163], Chapel [164], and Fortress [165]. However, these next

generation programming languages are implemented on current generation run-

time systems. The intermediate representation that is provided to the runtime has

eliminated the abstraction of what to compute without specifying how to compute.

In this section, we describe three example microprocessor architectures and then

we provide suggestions for developing next generation runtime systems.

The Roadrunner supercomputer at Los Alamos National Laboratory is a good

example of an architecture that highlights both trends of more complex memory

hierarchies and more concurrent computational units. The supercomputer consists

of 12,240 IBM PowerXCell 8i processors and 12,240 AMD Opteron cores [166]. The

Opteron cores have a split-level L1 cache and a unified L2 cache. The PowerX-

Cell 8i processors contain one Power Processing Element (PPE) and eight Syner-

gistic Processing Elements (SPEs). The PPE has a traditional memory hierarchy

of a split-level L1 cache and a unified L2 cache. The SPE can directly access only

256 KB of memory called the local store. Main memory can be accessed by the

SPE only through direct memory access transfers to or from the local store. The

supercomputer memory hierarchy is a combination of three distinct subsystems:

the SPE local store and access to main memory, the PPE access to main memory,

and the Opteron conventional memory hierarchy.

The NVIDIA Fermi GPU architecture has an unusual two level cache hierar-

chy. The architectural model contains streaming multiprocessor units where each

streaming multiprocessor is a set of computational processors [167]. Each stream-

ing multiprocessor has 64 KB of configurable shared memory. The shared memory

may be configured as 48 KB of scratchpad memory [168] and 16 KB of L1 cache or

16 KB of scratchpad memory and 48 KB of L1 cache. All streaming multiprocessors
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share 768 KB of L2 cache. The total size of the registers is larger than the total size

of the L1 caches, and the total size of the L1 caches equals the L2 cache size.

The Tilera TILE64 is a system-on-chip multicore architecture [169]. The multi-

processor consists of 64 tile processors that are arranged in an 8 x 8 array. The tiles

are connected through a 2D mesh network with I/O interfaces on the periphery.

Each processor has a split-level 16KB L1 cache backed by a unified 64 KB L2 cache.

The L2 caches can be shared across tiles to provide a virtual 4 MB L3 cache with

non-uniform access times. The tiles are connected through five independent net-

works that support five distinct functions. One network transports data requests

from the tiles to the memory controllers. Another network communicates data

requests among the L2 caches of each tile. Two of the networks are reserved for

explicit user-level communication. The final network handles I/O requests.

The Roadrunner supercomputer, the Fermi GPU, and the TILE64 processor are

three examples of the diversity in microprocessor design. All three designs have a

large number of concurrent processing units and a heterogeneous memory hierar-

chy. Several approaches to implementing parallel languages that are programmed

for the memory hierarchy rely on compile-time information in order to tune the

program to the target architecture [170, 171]. Other approaches can use runtime

information to respond to the target architecture. Two notable examples of these

runtime systems are the Merge platform [172] and the Ocelot framework [173]. The

former uses virtual function calls while the latter uses just-in-time compilation to

respond to changes at runtime.

The next generation programming languages are implemented on current gen-

eration runtime systems. As the number of cores per processor increases, the rel-

ative penalty of devoting an entire core to the runtime optimization framework

decreases. We argue that the high-level representation of the program should be

available to the runtime system. Explicit parallelism is now ubiquitous in com-
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modity hardware. Traditionally, an emphasis has been placed on extracting max-

imum efficiency from parallel and distributed computing. Modern supercom-

puter centers are configured with some combination of three distinct computa-

tional regimes: isolated memory spaces (message passing, MPI), shared memory

spaces (multicore, OpenMP), and hardware accelerators (GPUs, PPUs). In our

experience interacting with application scientists, they are most interested in a

breadth of parallelism that can be applied towards their diverse research projects.

The future will contain a set of rich concurrent runtime systems that take advan-

tage of cheap computation to dynamically restructure the communication patterns

of a program. The end result will be more implicit parallelism in the runtime, when

previously we had relied on implicit parallelism in the microprocessor, in order to

improve application productivity.
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